

# AIM & THURLBY THANDAR INSTRUMENTS

CPX400D & DP

PowerFlex Dual DC Power Supply

BEDIENUNGSANLEITUNG AUF DEUTSCH

Aim-TTi

# Inhaltsverzeichnis

| Sicherheit 5<br>Installation 6            |
|-------------------------------------------|
| Installation 6                            |
|                                           |
| Anschlüsse 7                              |
| Manueller Betrieb 9                       |
| Ferngesteuerter Betrieb (nur CPX400DP) 16 |
| Fernsteuerbefehle (nur CPX400DP) 27       |
| Wartung 33                                |

**Hinweis:** Die jeweils Version dieses Handbuchs, der Gerätetreiber und Software können Sie herunterladen unter: http://www.tti-test.com/go/csx

Dieses Handbuch trägt die Bezeichnung 48511-1480 Issue 12

# **Specification**

General specifications apply for the temperature range 5°C to 40°C. Accuracy specifications apply for the temperature range 18°C to 28°C after 1 hour warm-up with no load and calibration at 23°C. Typical specifications are determined by design and are not guaranteed.

# **OUTPUT SPECIFICATIONS**

| Voltage Range:                                  | 0V to 60V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Range:                                  | 0A to 20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Note: In manual operation, figures given above. | actual maxima for voltage and current are typically 1% greater than the                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Power Range:                                    | Up to 420W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Output Voltage Setting:                         | By coarse and fine controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Output Current Setting:                         | By single logarithmic control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Operating Mode:                                 | Constant voltage (CV) or constant<br>current (CC) with automatic cross-<br>over, provided that the power<br>demanded stays within the power<br>envelope, see graph. Outside of<br>this envelope the output becomes<br>unregulated.                                                                                                                                                                                                                                                                                      |
| Operating Ranges:                               | Four selectable ranges: 60V/20A, 60V/7A, 20V/20A and Custom Limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 | Any V/I setting of the 60V/7A or 20V/20A ranges always falls within the appropriate part of the Power Envelope.<br>The 60V/20A range permits any setting up to 60V and 20A but the output will become unregulated if operated outside of the Power Envelope, see above.<br>The voltage and current limits of the Custom Limits range can be set to any $V_{max}$ between 0.1V & 60V and $I_{max}$ between 0.01A and 20A. This facility is most useful in limiting operation to a particular part of the Power Envelope. |
| Settings Lock:<br>(S-Lock)                      | Voltage and current settings can be locked by a single button press.<br>Lock accuracy is equal to meter accuracy (see Meter Specification)                                                                                                                                                                                                                                                                                                                                                                              |
| Output Switch:                                  | Electronic. Preset voltage and current displayed when off.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Output Terminals:                               | Front panel: Universal 4mm safety binding posts on 19mm (0.75") pitch.<br>Rear Panel: Barrier strip connections (CPX400DP only)                                                                                                                                                                                                                                                                                                                                                                                         |
| Output Sensing:                                 | Switchable between local and remote. Remote connection by spring-loaded push terminals on front panel and barrier strip on rear panel (CPX400DP only)                                                                                                                                                                                                                                                                                                                                                                   |
| Output Protection:                              | Forward protection by Over-Voltage Protection (OVP) and Over-Current<br>Protection (OCP) trips.<br>Reverse protection by diode clamp for reverse currents up to 3A.                                                                                                                                                                                                                                                                                                                                                     |
| OVP Range:                                      | 1V to 66V set by front panel screwdriver adjustment or via the remote interfaces (CPX400DP only). Setting resolution: 100mV. Response time: Typically 1ms. Maximum voltage that should be applied across the terminals is 70V.                                                                                                                                                                                                                                                                                          |
| OCP Range:                                      | Measure-and-compare over-current protection is implemented in firmware<br>and can only be set via the remote interfaces (CPX400DP only). Setting<br>resolution: 10mA. Response time: typically 500ms.<br>For CPX400D, OCP is fixed at 22A.                                                                                                                                                                                                                                                                              |
| Over-temperature<br>Protection:                 | The output will be tripped off if a fault causes the internal temperature to rise excessively.                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Line Regulation:                              | Change                                                                 | in output for<br>Constant volt<br>Constant cur                                                  | a 10% line cha<br>age: <0.01% of<br>rent: <0.01% of        | inge:<br>f maximum c<br>maximum c        | output<br>output                   |             |
|-----------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|------------------------------------|-------------|
| Load Regulation:                              | Change<br>sense c                                                      | in output for<br>connected:<br>Constant volt<br>Constant cur                                    | any load chang<br>age: <0.01% of<br>rent: <0.05% of        | ge within Po<br>f maximum c<br>maximum c | werFlex envelo<br>output<br>output | ppe, remote |
| Ripple & Noise<br>(20MHz bandwidth):          | 5mVrm<br>mode.                                                         | s max; typica                                                                                   | lly <3mVrms, <                                             | 15mV pk-pk                               | , at maximum l                     | oad, CV     |
| Transient Load Response:                      | <250us                                                                 | to within 50n                                                                                   | nV of set level f                                          | or a 5% to 9                             | 5% load chang                      | je.         |
| Voltage Programming<br>Speed (CPX400DP only): | Maximu<br>(for resi                                                    | ım time requi<br>stive load).                                                                   | red for output to<br>Excludes comm                         | o settle withi<br>and process            | n 1% of its tota<br>sing time.     | l excursion |
| Range and Setting                             |                                                                        | 90% Load                                                                                        | No Load                                                    |                                          | 90% Load                           | No Load     |
| 60V 7A                                        | Up                                                                     | 8ms                                                                                             | 8ms                                                        | Down                                     | 80ms                               | 1.5s        |
| 20V 20A                                       | Up                                                                     | 8ms                                                                                             | 8ms                                                        | Down                                     | 10ms                               | 1.2s        |
| Temperature Coefficient:                      | Typicall                                                               | y <100ppm/°                                                                                     | С                                                          |                                          |                                    |             |
| Status Indication:                            | Output<br>Constar<br>Constar<br>Unregu<br>Remote<br>LAN lar<br>Trip me | ON lamp.<br>nt voltage mo<br>nt current mo<br>lated (power<br>lamp (CPX40<br>np<br>ssage on dis | de lamp.<br>de lamp.<br>limit) lamp<br>00DP only)<br>play. |                                          |                                    |             |

## METER SPECIFICATIONS

| Meter Types:       | Dual 4 digit meters with 10mm (0.39") LEDs. Reading rate 4 Hz.                   |
|--------------------|----------------------------------------------------------------------------------|
| Meter Resolutions: | 10mV, 10mA                                                                       |
| Meter Accuracies:  | Voltage 0.1% of reading $\pm 2$ digits<br>Current 0.3% of reading $\pm 2$ digits |

# ADDITIONAL SPECIFICATIONS

| Independent Mode:                              | Each output is fully independent and isolated. Operation is equivalent to two single power supplies.                                                                                          |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VoltageTracking Mode:<br>(V <sub>TRACK</sub> ) | With $V_{\text{TRACK}}$ selected the voltage controls of Output 1 (the Master) set an identical voltage on Output 2. The outputs remain isolated and the current controls remain independent. |
| Tracking Accuracy:                             | Locking the Master (S-Lock) also locks the voltage of Output 2.<br>Slave voltage = Master voltage $\pm$ (0.1% of Master voltage $\pm$ 20mV)                                                   |
| Synchronous On/Off:                            | In addition to the independent DC On/Off controls for each output, the outputs can be turned on or off simultaneously using the Synchronous On/Off key. This key operates in all modes.       |

# DIGITAL INTERFACES (CPX400DP only)

Full digital remote control facilities are available through the RS232, USB, LAN and GPIB interfaces.

| Voltage Setting:                   | 16-bit, Resolution 10mV, Accuracy $\pm$ (0.05% +10mV)                                                                                            |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Setting:                   | 16-bit, Resolution 1mA, Accuracy $\pm (0.3\% + 0.005A)$                                                                                          |
| RS232:                             | Standard 9-pin D-connector. Baud rate 9600.                                                                                                      |
| GPIB:                              | Conforming with IEEE488.1 and IEEE488.2                                                                                                          |
| USB:                               | Standard USB 2.0 hardware connection. Operates as a virtual COM port.                                                                            |
| LAN:                               | Ethernet 100/10base-T hardware connection. 1.4 LXI Core 2011.                                                                                    |
| Remote Command<br>Processing Time: | Typically <25ms between receiving the command terminator for a step voltage change at the instrument and the output voltage beginning to change. |

## GENERAL

| AC Input:          | 110V – 240V AC ± 10%, 50/60Hz.<br>Installation Category II.                                   |
|--------------------|-----------------------------------------------------------------------------------------------|
| Power Consumption: | 1250VA max.                                                                                   |
| Operating Range:   | +5°C to +40°C, 20% to 80% RH.                                                                 |
| Storage Range:     | -40°C to + 70°C.                                                                              |
| Environmental:     | Indoor use at altitudes up to 2000m, Pollution Degree 2.                                      |
| Safety:            | Complies with EN61010-1.                                                                      |
| EMC:               | Complies with EN61326.                                                                        |
| Size:              | 210 x 130 x 375mm (WxHxD) half rack width x 3U height (optional rack mounting kit available). |
| Weight:            | 7.4kg                                                                                         |

# Sicherheit

Dieses Gerät wurde nach der Sicherheitsklasse (Schutzart) I der IEC-Klassifikation und gemäß den europäischen Vorschriften EN61010-1 (Sicherheitsvorschriften für elektrische Mess-, Steuer, Regel- und Laboranlagen) entwickelt. Es handelt sich um ein Gerät der Installationskategorie II, das für den Betrieb mit einer normalen einphasigen Versorgung vorgesehen ist.

Das Gerät wurde gemäß den Vorschriften EN61010-1 geprüft und wurde in sicherem Zustand geliefert. Die vorliegende Anleitung enthält vom Benutzer zu beachtende Informationen und Warnungen, die den sicheren Betrieb und den sicheren Zustand des Gerätes gewährleisten.

Dieses Gerät ist für den Betrieb in Innenräumen der Umgebungsklasse 2, für einen Temperaturbereich von 5° C bis 40° C und 20 - 80 % relative Feuchtigkeit (nicht kondensierend) vorgesehen. Gelegentlich kann es Temperaturen zwischen +5° und –10°C ausgesetzt sein, ohne dass seine Sicherheit dadurch beeinträchtigt wird. Betreiben Sie das Gerät jedoch auf keinen Fall, solange Kondensation vorhanden ist.

Ein Einsatz dieses Gerätes in einer Weise, die für diese Anlage nicht vorgesehen ist, kann die vorgesehene Sicherheit beeinträchtigen. Auf keinen Fall das Gerät außerhalb der angegebenen Nennversorgungsspannungen oder Umgebungsbedingungen betreiben.

### WARNUNG! - DIESES GERÄT MUSS GEERDET WERDEN!

Jede Unterbrechung des Netzschutzleiters innerhalb oder außerhalb des Gerätes macht das Gerät gefährlich. Eine absichtliche Unterbrechung ist verboten. Die Schutzwirkung darf nicht durch Verwendung eines Verlängerungskabels ohne Schutzleiter aufgehoben werden.

Ist das Gerät an die elektrische Versorgung angeschlossen, so können die Klemmen unter Spannung stehen, was bedeutet, dass beim Entfernen von Verkleidungs- oder sonstigen Teilen (mit Ausnahme der Teile, zu denen Zugang mit der Hand möglich ist) höchstwahrscheinlich spannungsführende Teile bloßgelegt werden. Vor jeglichem Öffnen des Gerätes zu Nachstell-, Auswechsel-, Wartungs- oder Reparaturzwecken, Gerät stets von sämtlichen Spannungsquellen abklemmen. Kondensatoren in der Stromversorgung können auch noch nach Abschalten sämtlicher Stromversorgung Spannung führen, sie entladen sich jedoch innerhalb von etwa 10 Minuten nach Spannungsabschaltung.

Jegliche Nachstellung, Wartung und Reparatur am geöffneten, unter Spannung stehenden Gerät, ist nach Möglichkeit zu vermeiden. Falls unvermeidlich, sollten solche Arbeiten nur von qualifiziertem Personal ausgeführt werden, das sich der Gefahren bewusst ist.

Ist das Gerät eindeutig fehlerbehaftet, bzw. wurde es mechanisch beschädigt, übermäßiger Feuchtigkeit oder chemischer Korrosion ausgesetzt, so können die Schutzeinrichtungen beeinträchtigt sein, weshalb das Gerät aus dem Verkehr zurückgezogen und zur Überprüfung und Reparatur eingesandt werden sollte.

Sicherstellen, dass nur Sicherungen der vorgeschriebenen Stromstärke und des vorgesehenen Typs als Ersatz verwendet werden. Provisorische "Sicherungen" und der Kurzschluss von Sicherungshaltern ist verboten.

Beim Reinigen darauf achten, dass das Gerät nicht nass wird.

Am Gerät werden folgende Symbole verwendet:



# Installation

#### Netzbetriebsspannung

Das Gerät besitzt einen universellen Eingangsbereich und kann ohne jede weitere Einstellung mit einer Nenn-Netzversorgung von 115 oder 230 V betrieben werden. Stellen Sie sicher, daß die Versorgung am Ort den in der Spezifikation aufgeführten Eingangsanforderungen entspricht.

#### Netzkabel

Schließen Sie das Instrument unter Verwendung des mitgelieferten Netzkabels an die Wechselstromversorgung an. Falls ein Netzstecker für eine unterschiedliche Steckdose erforderlich ist, muss ein geeigneter zugelassener Netzkabelsatz verwendet werden, der mit der erforderlichen Steckdose und einem IEC60320 C13-Stecker für das Instrument versehen ist. Die minimale Nennstromstärke des Kabelsatzes für die beabsichtigte Wechselstromversorgung ist den Nennleistungsangaben auf dem Gerät oder den Spezifikationen zu entnehmen.

#### WARNUNG! DIESES GERÄT MUSS GEERDET WERDEN!

Jede Unterbrechung des Netzschutzleiters innerhalb oder außerhalb des Gerätes macht das Gerät gefährlich. Eine absichtliche Unterbrechung ist verboten.

#### Belüftung

Das Netzgerät wird durch ein auf der Rückseite befindliches Gebläse mit mehreren Geschwindigkeiten gekühlt. Achten Sie darauf, das die Lufteinlasschlitze auf Geräteoberseite und an den Seiten sowie die Auslassschlitze an der Rückseite nicht blockiert werden. Bei Einschubmontage entweder für ausreichenden Raum um das Gerät herum sorgen, oder ein externes Gebläse zur Zwangskühlung einsetzen.

#### Aufstellung/Montage

Das Gerät eignet sich sowohl als Tischgerät als auch für den Gestelleinbau. Für die Aufstellung als Tischgerät wird es mit Füßen geliefert. Die vorderen Füße sind mit einem Kippmechanismus versehen, der eine optimale Winkeleinstellung ermöglicht.

Ein Montagesatz für den Einbau einer oder beider 3 U hohen Einheiten halber Breite in ein 19" Gestell ist vom Hersteller bzw. seinen Auslandsvertretungen beziehbar.

# Anschlüsse

Anschlüsse auf der Gerätevorderseite



Die Last sollte an die mit OUTPUT (Ausgang) gekennzeichneten positiven (roten) und negativen (schwarzen) Klemmen angelegt werden. Die Ausgangsklemmen (OUTPUT) sind für einen maximalen Strom von 30 A ausgelegt.

Die Fernfühleranschlüsse für die Last (falls gewünscht) erfolgen über die entsprechenden Plus- (+) und Minus- (□) SENSE Klemmen. Setzen Sie den Schalter LOCAL/REMOTE auf REMOTE, wenn die Fernfühlerfunktion eingesetzt werden soll. Setzen Sie den Schalter auf LOCAL zurück, wenn die Fernfühlerfunktion nicht verwendet wird.

Die mit  $\pm$  markierte Klemme ist mit dem Gehäuse und dem Schutzleiter verbunden.

## Anschlüsse auf der Geräterückseite (nur CPX400DP)



Die Ausgangs- und Fernfühlerklemmen für OUTPUT1 und OUTPUT2 liegen auf der Geräterückseite im Duplikat vor. Diese Anschlüsse sind mit +O/P, –O/P, +S und –S gekennzeichnet und mit ihren Äquivalenten auf der Gerätefront parallel geschaltet.

Setzen Sie den Schalter LOCAL/REMOTE auf REMOTE, wenn die Fernfühlerfunktion eingesetzt werden soll. Bei Verwendung der rückseitigen Ausgänge empfiehlt es sich die Fernfühlerfunktion zu nutzen, um eine stabile Ausgangsspannung zu gewährleisten. Der Anschluss kann an die Fernfühleranschlüsse auf der Vorder- oder auf der Rückseite erfolgen, jedoch nie an beide gleichzeitig. Setzen Sie den Schalter auf LOCAL zurück, wenn die Fernfühlerfunktion nicht verwendet wird.

## RS232 (nur CPX400DP)

9-pol. D–Buchse mit den unten beschriebenen Pin-Belegungen. Kann mithilfe eines vollverdrahteten Kabels (männlich-weiblich 1:1) ohne überkreuzende Verbindungen an einen standardmäßigen PC-Port angeschlossen werden.

| Pin | Bez. | Beschreibung                                 |
|-----|------|----------------------------------------------|
| 1   | RI   | Passive Bestimmung (+V durch 10 k $\Omega$ ) |
| 2   | TXD  | Übertragungsdaten vom Gerät                  |
| 3   | RXD  | Empfangsdaten zum Gerät                      |
| 4   | CTS  |                                              |
| 5   | GND  | Signalmasse                                  |
| 6   | RTS  | Passive Bestimmung (+V durch 10 k $\Omega$ ) |
| 7   | DSR  | Keine interne Verbindung                     |
| 8   | DTR  |                                              |
| 9   | CD   | Keine interne Verbindung                     |
|     |      |                                              |

Signalmasse ist mit Gerätemasse verbunden.

## USB (nur CPX400DP)

Der USB-Port ist an die Geräteerde angeschlossen. Er entspricht USB 2.0 (Full Speed) und akzeptiert ein standardmäßiges USB-Kabel. Die Plug-and-Play-Funktion von Windows sollte automatisch erkennen, dass das Gerät angeschlossen worden ist. Falls der korrekte Treiber nicht gefunden wird, befolgen Sie bitte die Windows-Aufforderungen auf dem Bildschirm und installieren Sie die benötigten Dateien von der mitgelieferten CD.

## LAN (nur CPX400DP)

Die LAN-Schnittstelle entspricht 1.4 LXI (Lan eXtensions for Instrumentation) Core 2011. Eine Fernsteuerung über die LAN-Schnittstelle ist mittels TCP/IP Socket-Protokoll möglich. Das Gerät enthält auch einen einfachen Web-Server mit Informationen zum Gerät, der eine Konfiguration ermöglicht. Da es durchaus möglich ist, die LAN-Schnittstelle derart falsch zu konfigurieren, dass ein Datenaustausch per LAN nicht mehr möglich ist, besitzt das Gerät auf der Rückseite einen versenkten Schalter mit der Bezeichnung LAN RESET, sodass ein Zurücksetzen auf die Werksvoreinstellung mithilfe des LCI (LAN Configuration Initialise) Mechanismus möglich ist.

Weitere Details entnehmen Sie bitte dem Abschnitt "Ferngesteuerter Betrieb". Weitere Informationen zu den LXI Spezifikationen finden Sie auf www.lxistandard.org/home

## GPIB (nur CPX400DP)

Die GPIB Signalerde ist mit Geräteerde verbunden. Folgende Befehlssätze stehen zur Verfügung:

#### SH1 AH1 T6 TE0 L4 LE0 SR1 RL2 PP1 DC1 DT0 C0 E2

Die GPIB-Adresse wird von der Gerätevorderseite aus gesetzt.

# **Manueller Betrieb**

Die Funktion beider Ausgänge ist identisch. Daher trifft folgende Beschreibung auf beide zu.

#### Einschalten

Der Netzschalter befindet sich unten links auf der Gerätevorderseite und schaltet zwischen Standby ( $\mathbf{0}$ ) und Ein ( $\mathbf{I}$ ). Im Standby bleibt der Nebenstromkreis angeschlossen und verbraucht ~6 Watt.

Ziehen Sie den Netzstecker an der Geräterückseite oder schalten Sie die Netzsteckdose aus, um das Gerät ganz vom Netz zu trennen. Achten Sie darauf, dass die Abschaltmöglichkeit gut zugänglich ist. Trennen Sie das Gerät bei Nichtgebrauch vom Netz.

Die untere Messanzeige von Ausgang 1 zeigt kurz die Geräte-Firmware-Revisionsnummer, auf der CPX400DP folgt darauf die Interface-Firmware-Revisionsnummer (in der oberen Anzeige erscheint **IF**), ehe im Display die Spannungs- und Stromanzeige erfolgt; die LAN Anzeige über der rechten Messanzeige leuchtet ebenfalls auf, geht aber nach ca. 30 s aus, wenn keine aktive LAN-Verbindung gefunden wurde (siehe den Absatz zu LAN-Fehler im Abschnitt LAN-Schnittstelle).



Beim Einschalten ist der Ausgang standardmäßig immer ausgeschaltet. Die Werte für Ausgangsspannung und Strom hängen von den jeweiligen Reglereinstellungen ab und werden auf dem Display angezeigt. Die Lampe VIEW leuchtet, um darauf hinzuweisen, dass es sich bei den angezeigten Werten um die Voreinstellungen handelt. Alle anderen Einstellungen entsprechen dem Zustand vor dem letzten Abschalten des Geräts.

Der Gleichspannungsausgang kann so eingerichtet werden, dass er beim Einschalten des Geräts entweder immer ausgeschaltet ist oder den Zustand vor dem letzten Ausschalten des Geräts annimmt. Diese Einstellung kann wie folgt geändert werden: Bei gedrückter VIEW Taste, die Taste OUTPUT drücken und halten – auf dem Display erscheint nun 1 Sekunde lang die aktuelle Einstellung (OP OFF falls die Werksvoreinstellung gewählt ist). Anschließend zeigt das Display 2 Sekunden lang blinkend die neue Einstellung an (LASt Set in diesem Fall). Nach 2 Sekunden wird die neue Einstellung kontinuierlich angezeigt und die Änderung durchgeführt. Geben Sie nun die Tasten OUTPUT und VIEW frei. Wenn Sie diesen Vorgang wiederholen, wird die Einstellung wieder rückgängig gemacht. Beachten Sie, dass der Einschaltstatus der beiden Ausgänge einzeln eingerichtet werden muss.

## Einrichten des Ausgangs

Bei eingeschalteter Stromversorgung (I) und ausgeschaltetem OUTPUT (Ausgang) können Sie die Spannungs- und Strombegrenzung mit den Reglern VOLTAGE und CURRENT präzise regeln. Die obere Anzeige zeigt die eingestellte Spannung und die untere Anzeige den maximalen Strom an.

Wenn der Schalter OUTPUT eingeschaltet ist, leuchten die Lampen OUTPUT ON und CV (Konstantspannung) auf. Die obere Messanzeige zeigt weiterhin die eingestellte Spannung an, während auf der unteren Anzeige nun der tatsächliche Laststrom dargestellt wird.

#### Bereichswahl & Benutzergrenzwerte

Es gibt 4 mögliche Bereiche, die mit den Tasten unmittelbar unter dem Display gewählt werden. Die zugehörige Lampe leuchtet auf, um den gewählten Bereich anzuzeigen. Da sich bei der Umstellung auf einen anderen Bereich die Ausgangsspannung ändern kann, steht diese Funktion nur bei ausgeschaltetem Ausgang zur Verfügung. Wird versucht, den Bereich bei eingeschaltetem Ausgang zu wechseln, erscheint kurz die Meldung turn off im Display, die OUTPUT Anzeige blinkt und fordert somit den Benutzer auf, den Ausgang abzuschalten. Der werksseitig voreingestellte Bereich ist 60V/20A.

|     |   | 1   | ÷ | 1   | 1 |   |   |   |     | ÷ |     | 1 |     |   |   | 1 |   |   | :  | : : |    |   |   |   | : : | : |   |   | 2 |   |   | : : | ; |   |    |   | : : |   | : |     | 1 |   |   | : : |   | 1 | : | : | : : |   |    |   | 1 | : : |   |   | : : |   | : : | ; | 2 |       | : : | ; | 2  |   |   | : : |   | : : |  |
|-----|---|-----|---|-----|---|---|---|---|-----|---|-----|---|-----|---|---|---|---|---|----|-----|----|---|---|---|-----|---|---|---|---|---|---|-----|---|---|----|---|-----|---|---|-----|---|---|---|-----|---|---|---|---|-----|---|----|---|---|-----|---|---|-----|---|-----|---|---|-------|-----|---|----|---|---|-----|---|-----|--|
|     | 6 | 60  | ý | ij  | 2 | 0 | A |   |     | : |     | ` | 5   | i | i |   |   | 6 | 60 | )\  | 11 | 7 | P | ŀ |     | i | 1 |   | ł |   | - |     | Ì | ł | 21 | 0 | V   | ľ | 2 | 0   | Á |   | Ē |     |   | 1 | Ì | Ì | С   | U | IS | T | С | )   | A | L | l   | M | I   | Ē | ŝ | -     |     | ŀ | ł  | o | ŀ | d   | i |     |  |
|     | ſ |     | į |     |   | i |   |   |     | Ç | 2   | ) |     | į |   |   | ſ |   | ł  |     | i  | i |   | ł |     | į | ( | C | Ś |   | i |     | Ì |   |    | ł |     | ł | i |     | Ì |   | ( | C   | ) |   | į | i |     | 1 |    |   | ł |     |   |   |     | Ç | 2   | ) |   | i     | t   | þ | \$ | S | e | t   | i |     |  |
|     |   |     |   |     |   |   |   |   |     | ÷ |     |   |     | ÷ | ; | - | 7 |   | ÷  |     |    | ÷ |   | ÷ |     | ÷ |   |   | ÷ | - | ÷ |     | ÷ | 7 |    | ÷ |     |   | ÷ |     | ÷ | 1 | ÷ |     |   |   | : | ÷ |     |   |    |   |   |     |   | 1 |     | ; |     | ÷ |   | <br>: |     | ÷ |    |   | ; |     | ÷ |     |  |
|     |   |     |   | ::  |   |   |   |   | : : |   |     |   |     |   |   |   |   |   |    | : : |    |   |   |   |     |   |   |   |   |   |   | : : |   |   |    |   | : : |   |   |     |   |   |   | : : |   |   |   | - |     |   |    |   |   |     |   |   |     |   | : : |   |   |       | : : |   |    |   |   |     |   | ::  |  |
| 111 |   | 11  | 1 |     |   |   |   | 1 | ::  | 1 |     | 1 |     | 1 |   | 1 |   |   | 1  |     | 1  |   |   | 1 |     | 1 |   |   | 1 |   | : |     | 1 |   |    | 1 |     | 1 | 1 |     | 1 | 1 | 1 |     |   |   | 1 | 1 |     |   | 1  |   |   |     |   |   |     | 1 |     | 1 |   | :     |     | 1 |    |   | 1 |     | 1 |     |  |
|     |   | • • |   | • • |   |   |   |   | • • |   | • • |   | • • |   |   |   | • |   |    | • • |    |   |   |   | • • |   |   |   |   | • | ٠ | • • |   |   |    |   | • • |   |   | • • |   |   |   | • • |   | • |   |   | • • |   |    |   |   | •   |   |   |     |   | •   |   |   | ٠     | • • |   |    |   |   | • • |   | • • |  |
|     |   |     |   |     |   |   |   |   |     |   |     |   |     |   |   |   |   |   |    |     |    |   |   |   |     |   |   |   |   |   |   |     |   |   |    |   |     |   |   |     |   |   |   |     |   |   |   |   |     |   |    |   |   |     |   |   |     |   |     |   |   |       |     |   |    |   |   |     |   |     |  |
|     |   |     |   |     |   |   |   |   |     |   |     |   |     |   |   |   |   |   |    |     |    |   |   |   |     |   |   |   |   |   |   |     |   |   |    |   |     |   |   |     |   |   |   |     |   |   |   |   |     |   |    |   |   |     |   |   |     |   |     |   |   |       |     |   |    |   |   |     |   |     |  |

Der PowerFlex Bereich begrenzt den Maximalstrom bei der jeweils eingestellten Spannung auf die Leistungsgrenze oder auf 20 A, je nachdem welcher niedriger ist (siehe Abschnitt zur Leistungsbegrenzung weiter unten).

Die Bereiche 60V/7A und 20V/20A arbeiten wie gewohnt, so dass ein Konstantspannungsbetrieb (CV) über den gesamten Spannungsbereich möglich ist, vorausgesetzt der Laststrom liegt unter dem Maximalwert für den jeweiligen Bereich. Der Betrieb wird immer durch die Leistungskurve des Geräts bestimmt. Die VOLTAGE und CURRENT Regler sind immer so skaliert, dass der maximale Wert für den jeweiligen Bereich eingestellt ist, wenn sie ganz nach rechts gedreht werden.

Die Funktion CUSTOM LIMITS ermöglicht die Neudefinierung der Maximalwerte für die VOLTAGE und CURRENT Regler, sodass der Anwender die Regler nur in einem speziellen, begrenzten Bereich einstellen kann. Dies hat nicht nur den Vorteil, dass das versehentliche Anlegen einer falschen Spannung an die Last verhindert wird, sondern auch, dass sich der nun begrenzte Bereich unter voller Nutzung des Einstellbereichs von 300° mit dem Analogregler feinfühliger einstellen lässt.

Zum Einrichten neuer CUSTOM LIMITS schalten Sie den Ausgang aus und wählen Sie den Bereich 60V/20A. Die voreingestellten Grenzwerte werden im Display angezeigt. Nun können Sie den Reglern MAIN und FINE VOLTAGE und mit dem CURRENT Regler die neuen Benutzergrenzwerte präzise einstellen. Drücken und halten Sie die Taste CUSTOM LIMITS; das Display zeigt die neuen Grenzwerte ca. 2 s lang an. Danach zeigt der untere Display (A) **SEt** und weist darauf hin, dass die neuen Grenzwerte gespeichert wurden. Geben Sie die Taste frei. Das Display zeigt nun die voreingestellten V und I Grenzwerte, die der Reglereinstellung in den neu definierten Bereichen entsprechen.

Liegen diese neuen Grenzwerte außerhalb der Leistungskurve (siehe Absatz zur Leistungsbegrenzung unten), so dass der Betrieb unter bestimmten Umständen von CV oder CC (Konstantstrom) auf unreguliert (UNREG - Leistungsgrenze) wechseln könnte, blinkt die Leuchte CUSTOM LIMITS während des Einstellvorgangs, um dies anzuzeigen. Die Leuchte blinkt so lange weiter, bis die Bereichstaste freigegeben wird. Wenn die Lampe während der Einstellung ständig leuchtet, weist dies darauf hin, dass V<sub>MAX</sub> x I<sub>MAX</sub> <420 W ist und dass der Betrieb daher generell im CV- oder CC-Modus bleiben müsste. CUSTOM LIMITS bleibt so lange gewählt, bis eine andere Bereichstaste gedrückt wird. Wenn CUSTOM LIMITS durch einen kurzen Tastendruck neu gewählt wird, werden die zuletzt eingestellten Benutzergrenzwerte aufgerufen.

Wenn CUSTOM LIMITS gewählt ist, entspricht der Grenzwert des MAIN VOLTAGE Reglers genau dem nach obigem Verfahren gewählten Wert, wenn sich der FINE Regler in Mittenstellung befindet (auf dem Gerät mit einem • markiert). Mit dem FINE Regler kann eine zusätzliche Feinabstimmung von ± 1% (des maximalen Bereichs) vorgenommen werden.

#### Konstantspannung

Die Ausgangsspannung wird mit den VOLTAGE MAIN und FINE VOLTAGE Reglern geregelt; mit dem Regler CURRENT wird der Maximalstrom eingestellt.

Die CV Lampe leuchtet auf, um den Betrieb mit Konstantspannung anzuzeigen.

#### Konstantstrom

Wenn der Lastwiderstand so niedrig ist, dass bei der gewählten Ausgangsspannung ein höherer Strom fließen würde, als durch die Strombegrenzung vorgegeben, so schaltet das Netzgerät automatisch auf Konstantstrombetrieb. Der Ausgangsstrom wird mit dem CURRENT Regler eingestellt, während die VOLTAGE Regler die maximal erzeugte Spannung bestimmen.

Die Konstantstromlampe (CC) leuchtet auf, um den Betrieb mit Konstantstrom anzuzeigen.

#### Momentanstrom

Mit Hilfe der Strombegrenzungsfunktion kann der Dauerausgangsstrom bis auf 10 mA herab begrenzt werden. Wie bei allen Präzisionsnetzgeräten wird jedoch auch hier ein Kondensator am Ausgang parallel geschaltet, um eine stabile Ausgangsspannung und ein gutes dynamisches Verhalten zu gewährleisten. Dieser Kondensator lädt sich bis zur Höhe der Ausgangsspannung auf und erzeugt beim Kurzschließen des Ausgangs durch seine Entladung einen Stromimpuls, auf den die Strombegrenzung keinen Einfluss hat.

#### Leistungsbegrenzung

Der Maximalstrom bei unterschiedlichen Spannungseinstellungen wird durch die Leistungskurve bestimmt (siehe folgende Abbildung):



Die Leistungskurve stellt 60V/7A, 42V/10A und 20V / 20A unter allen Umständen bereit (beide Ausgänge unter Last). Bei niedrigeren Ausgangsspannungen ist die Ausgangsleistung auf maximal 20 A begrenzt.

Bei einer Überschreitung der Leistungsgrenze wechselt die Statusanzeige von CV oder CC auf UNREG. Wurde das Netzgerät z. B. auf 20 V eingestellt (mit Strombegrenzung auf Maximalwert) und an eine 2  $\Omega$  Last angeschlossen, fließen 10 Ampere, so dass sich das Gerät im CV-Modus befindet. Wird die Spannung am Ausgang erhöht, so nimmt die Last mehr Leistung auf, bis schließlich bei etwa 29 V die Leistungsgrenze überschritten wird und das Netzgerät von CV auf UNREG wechselt.

#### Anschluss der Last

Die Last sollte an die mit OUTPUT gekennzeichneten positiven (rot) und negativen (schwarz) Klemmen auf der Gerätevorderseite angelegt werden. Beide Klemmen sind galvanisch getrennt und können daher an Erde gelegt werden. Alternativ kann auf dem CPX400DP der Anschluss über die zusätzlichen Ausgangsklemmen auf der Rückseite erfolgen, was sich besonders beim Einbau in ein Rack anbietet.

Bei Verwendung der rückseitigen Klemmen sollte immer auch die Fernfühlerfunktion gewählt werden, damit die Stabilisierung der Ausgangsspannung im Rahmen der technischen Daten gewährleistet ist (siehe Abschnitt Fernfühlerfunktion unten). Wenn die rückseitigen Ausgangsklemmen ohne Einsatz der Fernfühlerfunktion verwendet werden, unbedingt darauf achten, dass der Schalter auf der Vorderseite auf LOCAL gesetzt ist. Die Regelung verschlechtert sich aufgrund des geringen Spannungsabfalls in der Verdrahtung zu den rückseitigen Klemmen etwas, wenn die Fernfühlerfunktion ausgeschaltet ist.

#### Fernfühlerfunktion

Obwohl das Gerät eine sehr geringe Ausgangsimpedanz besitzt, erhöht sich diese zwangsweise durch den Widerstand der angeschlossenen Kabel. Bei hohen Strömen ergibt sich hieraus ein deutlicher Unterschied zwischen der angezeigten Quellspannung und der tatsächlichen Lastspannung (zwei Anschlusskabel mit 5 m $\Omega$  erzeugen z. B. bei einem Strom von 20 A einen Spannungsabfall von 0,2 V). Dieses Problem lässt sich zwar durch Verwendung kurzer Anschlusskabel mit großem Querschnitt einschränken, es ist aber besser, diesen Effekt mit Hilfe der Fernfühlerfunktion ganz zu umgehen.

Dazu müssen die Fernfühlerklemmen (Sense) an der Last anstelle der Spannungsquelle angeschlossen werden. Schließen Sie die Kabel an die Federklemmen des SENSE-Anschlusses und direkt an der Last an. Setzen Sie den Schalter LOCAL/REMOTE auf REMOTE. Um Instabilität und dynamisches Fehlverhalten zu vermeiden, muss darauf geachtet werden, dass eine gute Verbindung zwischen jedem Ausgangs- und Fernfühlerkabel besteht. Dies wird erreicht, indem man entweder die Kabel miteinander verdrillt oder ein abgeschirmtes Koaxialkabel verwendet (die Fernfühlerleitung bildet hierbei den Innenleiter). Instabilität und schlechte Regulierung aufgrund von Störsignalen auf den Sense-Leitungen bei Anschluss an komplexe Lasten können durch den Einbau eines geeigneten Kondensators direkt zwischen den einzelnen Sense-Anschlüssen und der zugehörigen Ausgangsklemme an der PSU-Frontplatte minimiert werden. Ein Polyester-Elko oder ein Elko mit niedrigem ESR-Wert zwischen 10uF und 100uF ist in der Regel ausreichend.

Der Spannungsabfall des jeweiligen Ausgangskabels darf 0,5 Volt nicht überschreiten. Setzen Sie den LOCAL/REMOTE Schalter auf LOCAL zurück, wenn die Fernfühlerfunktion nicht verwendet wird.

Bei Verwendung der rückseitigen Ausgänge beim CPX400DP empfiehlt es sich die Fernfühlerfunktion zu nutzen, um eine stabile Ausgangsspannung zu gewährleisten. Der Anschluss kann an die Fernfühleranschlüsse auf der Vorder- oder auf der Rückseite erfolgen, jedoch nie an beide gleichzeitig. Schließen Sie die Sense-Klemmen unter Beachtung obiger Empfehlungen an die Last an und setzen Sie den Schalter LOCAL/REMOTE auf REMOTE.

#### Reihen- oder Parallelschaltung mit anderen Spannungsquellen

Die Ausgänge des Netzgeräts sind galvanisch getrennt und können mit anderen Netzgeräten in Reihe geschaltet werden, um hohe Gleichstromspannungen bis zu 300 VDC zu erzeugen.



Die maximal zulässige Spannung zwischen einer Anschlussklemme und Erde (+) beträgt 300 VDC; die maximal zulässige Spannung zwischen der Anschlussklemme eines Ausgangs und einer Anschlussklemme des anderen Ausgangs beträgt ebenfalls 300 VDC.

**ACHTUNG!** Spannungen dieser Größenordnung sind äußerst gefährlich. Daher müssen die Ausgangsklemmen bei Verwendung derartiger Spannung unbedingt vor Berührung geschützt werden. Auf keinen Fall dürfen die Ausgangsklemmen in einem solchen Fall berührt werden. Sämtliche Anschlüsse an den Klemmen dürfen erst dann erfolgen, wenn alle betreffenden Netzgeräte ausgeschaltet sind.

Zu beachten ist, dass das Gerät nur als Stromquelle dient und keine Ströme ableiten kann, d. h. es können keine gegenphasigen Geräte angeschlossen werden.

Das Gerät kann auch mit anderen Netzteilen parallel geschaltet werden, um eine höhere Stromabgabe zu erzielen. Werden mehrere Geräte parallel geschaltet, entspricht die Ausgangsspannung dem Gerät mit der höchsten Ausgangsspannung. Dies gilt nur, solange der Strombegrenzungswert des betreffenden Geräts nicht erreicht wird. Ist dies der Fall, fällt die Ausgangsspannung auf die nächsthöchste Einstellung ab, usw. Bei Konstantstrombetrieb können mehrere Geräte parallel geschaltet werden, um einen Strom mit der Summe der jeweiligen Stromgrenzwerte bereitzustellen. Für optimalen Betrieb sollten die Netzgeräte getrennt an die Last angeschlossen werden.

Beachten Sie, dass die Ausgangsklemmen für einen maximalen Strom von 30 A ausgelegt sind. Sollen zwei oder mehr Quellen parallel geschaltet werden, um einen höheren Strom zu erreichen, muss die Verbindung an einer anderen Stelle erfolgen und nicht an einer der Anschlussklemmen

#### Schutzvorrichtungen



Der Überspannungsschutz (OVP) ist voll einstellbar im Bereich 1 V bis 66 V. Für CPX400D und CPX400DP im Local-Modus wird der OVP-Grenzwert über das per Schraubendreher einstellbare OVP-Potentiometer gesetzt, welches durch die Öffnung auf der Gerätevorderseite unmittelbar über der OVP-Taste zugänglich ist. Durch Drehen nach rechts wird der Grenzwert erhöht und kann direkt auf dem Display abgelesen werden, indem man die OVP-Taste darunter drückt. Im Fernsteuerbetrieb (nur CPX400DP) wird ein unabhängiger OVP-Wert verwendet, der über die RS232, USB, LAN (LXI) oder GPIB Schnittstellen eingestellt werden kann (Standardwert 66 V) – siehe ; see Abschnitt Fernsteuerbefehle. Falls die Ausgangsspannung den eingestellten OVP-Wert aus irgendeinem Grund überschreitet (einschl. externe Spannungen), wird der Ausgang abgeschaltet.

OCP (Überstromschutz) ist in der Firmware implementiert und kann nur eingerichtet und verwendet werden, wenn eine Fernsteuerung über die Schnittstellen RS232, USB, LAN (LXI) oder GPIB stattfindet (nur CPX400DP). Die Einstellung erfolgt in Schritten von 10 mA mit einer typischen Ansprechzeit von 500 ms. Im lokalen Modus und beim CPX400D ist OCP weiterhin aktiv, stellt sich aber automatisch auf 22 Ampere ein.

Wird der Überstromschutz ausgelöst, erscheint OUP triP. auf dem Display und die OUTPUT Lampe blinkt. Schalten Sie den Ausgang ab. Anstatt der Auslösemeldung sollten die normalen, voreingestellten Werte für V und I angezeigt werden. Nach Korrektur der Fehlerursache kann der Ausgang wieder eingeschaltet werden.

Selbst bei ausgeschaltetem Ausgang ist die Last weiterhin an die Ausgangsstufe des Netzgeräts angeschlossen. Legen Sie keine externen Spannungen über 70 V an die Klemmen des Netzgeräts an, da es sonst zu einer Beschädigung kommen kann.

Der Ausgang ist durch eine Diode gegen Rückspannungen geschützt. Diese Rückspannung darf 3 Ampere nicht überschreiten (Stromspitzen dürfen erheblich höher liegen).

#### Übertemperaturschutz

Sensoren auf beiden Sekundärkühlkörpern erkennen Übertemperaturen aufgrund von blockierter Luftströmung, Lüfterausfall oder einem Schaltungsfehler. Bei Übertemperatur wird der Ausgang abgeschaltet – die OUTPUT Anzeige blinkt und auf dem Display erscheint die Meldung OtP triP. Der Ausgang bleibt auch dann ausgeschaltet, wenn sich die Kühlkörper wieder abgekühlt haben. Nachdem die Ursache der Übertemperatur behoben wurde und sich die Kühlkörper auf normale Betriebstemperatur abgekühlt haben, kann der Ausgang zurückgesetzt werden, indem man den POWER Schalter auf Standby ( ) und dann wieder auf ( ) schaltet.

In unabhängigem Gerätemodus funktioniert bei einem Temperaturfehler an einem der beiden Ausgänge der andere Ausgang normal weiter. Ist das Gerät allerdings im Tracking-Modus, werden bei einem Temperaturfehler eines Ausgangs beide Ausgänge abgeschaltet. Die Auslösung des OtP trip (Übertemperaturschutzes) wird nur auf der Anzeige des Ausgangs dargestellt, der den Fehler verursacht hat.

Außerdem befindet sich ein Temperaturfühler in Nähe der PCF-Stufe (Leistungsfaktorkorrektur) auf der Hauptplatine. Wenn dieser eine Übertemperatur erkennt, werden alle Leistungskreise und das Display abgeschaltet (die Meldung OtP trip erscheint nicht). Sobald sich die Umgebungstemperatur senkt, schaltet sich das Gerät jedoch wieder ein. Waren die Ausgänge zum Zeitpunkt der Übertemperaturabschaltung ON und der Ausgangsstatus so eingerichtet, dass die Ausgänge den gleichen Status wie beim letzten Ausschalten annehmen (siehe Abschnitt 'Einschalten'), werden die Ausgänge wieder aktiviert. Wurde der zugrunde liegende Fehler nicht behoben, steigt auch die Umgebungstemperatur wieder an. Das Gerät schaltet sich in diesem Fall wiederholt ein und aus, bis das Problem mit der Übertemperatur gelöst ist.

## Einstellungen für das Display



Die eingestellte Strom- und Spannungsbegrenzung wird bei ausgeschaltetem Ausgang immer auf dem Display angezeigt, kann aber auch bei eingeschaltetem Ausgang aufgerufen werden, indem man die VIEW Taste drückt. Die VIEW Lampe leuchtet auf, wenn die VIEW Taste gedrückt ist.

#### Einstellungen für die Verriegelung

Durch Drücken der Taste LOCK wird die Strom- und Spannungsbegrenzung digital verriegelt. Die Einstellungen werden mit hoher Genauigkeit (besser als 1 Stelle) gespeichert. Anschließende Veränderungen der Regler VOLTAGE und CURRENT bleiben wirkungslos. Da eine Annullierung von LOCK zu einer Änderung der Ausgangseinstellungen führen würde, falls die Einstellung für VOLTAGE und CURRENT in der Zwischenzeit verändert wurde, erscheinen Warnmeldungen, bevor eine Annullierung der Funktion LOCK möglich ist. Hierzu die Taste gedrückt halten, um LOCK zu annullieren.

Bei abgeschaltetem Ausgang (sicherer Zustand) blinken die "unverriegelten" Einstellungen zweimal kurz im Display auf, bevor die Änderung durchgeführt wird. Die LOCK Leuchte geht dann aus.

|  | 1 | 1   |   |     | 1    | 1 | 1 | ŝ |   | ŝ  | ŝ  |   |     |    | : |   | ÷ |   | ŝ |   |    |    | ÷ | 1 | ŝ |   | : | i | 1 |   |   | 1 |   |    | ÷  | 1  | ŝ |    |   |    |    |     |   |    |    |    | 1  | 1  |   | ÷  |     |   | 1   | : :   |   | į |
|--|---|-----|---|-----|------|---|---|---|---|----|----|---|-----|----|---|---|---|---|---|---|----|----|---|---|---|---|---|---|---|---|---|---|---|----|----|----|---|----|---|----|----|-----|---|----|----|----|----|----|---|----|-----|---|-----|-------|---|---|
|  |   |     |   |     |      |   | • |   |   | 2  |    |   |     |    |   | • | - | ŀ | i | 1 | 1  | f. | ٦ | c | ٠ | E | r | 1 |   |   | r | ľ | Ŀ | k  | î  | ſ  | - | ۱, | c | •  |    |     |   |    |    |    | •  |    |   | ٠  | •   | • |     | • •   | • | • |
|  | 1 | 1   |   |     |      | 1 |   | 5 | ; | 7  | 7  |   |     | 7  |   | 7 | 1 | 3 | Ľ | I | 1  |    | à | c | 3 | Ľ | ÷ | 1 | ; | J | l | 1 | 1 | 17 | V  | Ľ  | Ĵ | ,  | c | )  | 1  |     |   | -  | 7  |    | 7  | 1  | ; | 1  | :   | ; |     | : :   |   | ; |
|  |   |     |   |     |      |   |   |   |   |    |    |   |     |    |   | ٠ |   | • | 1 |   |    |    |   | ٠ |   |   | ٠ | • |   |   |   | ٠ | ٠ |    |    |    |   |    |   |    |    |     |   |    |    |    | ٠  | ٠  | ٠ | ٠  | ٠   | ٠ |     | • •   |   | • |
|  |   |     |   | • • | <br> |   | ٠ |   |   | ٠  | v  |   | 1   |    | r | - | ۱ | 2 | Ľ | r |    |    | • | ٠ |   |   | ٠ |   | ٠ |   |   | • |   |    |    | ٠  |   | Ľ  |   | 1  | ٦  |     | ~ | ۰. | ٤. | 1  | ۰. | -  |   | ٠  |     |   |     |       |   | • |
|  |   |     |   |     |      |   |   |   |   |    | ۰  |   | 1   |    | H | ÷ | 4 | 1 | Ŀ | Ŀ |    |    |   | ٠ |   |   | ٠ |   |   |   |   |   |   |    |    |    |   | Ŀ  |   | C  |    | 11  |   |    | и  | ε. |    |    |   |    |     |   |     |       |   | • |
|  |   |     |   |     |      |   |   |   |   |    | 1  | v | J   |    | L | 1 | 4 | ŀ | V |   |    |    | ٠ | ٠ |   |   | ٠ |   |   |   |   |   |   |    |    |    |   | Ŀ  | - | v  | ٠  | •   | L | ,  | Ł  | ٩  | с. | ٠  |   | ٠  |     |   |     | • •   |   | ٠ |
|  |   |     |   | •   |      |   |   |   |   |    |    |   |     |    |   |   |   |   |   |   |    |    |   | ٠ |   |   | ٠ |   |   |   |   |   |   |    |    | ٠  |   |    |   |    |    |     |   |    |    |    | ٠  |    |   | ٠  |     |   |     |       |   | ٠ |
|  | × |     |   |     |      |   | ٠ |   |   |    |    |   |     |    | ٠ |   |   |   |   |   |    |    |   |   |   |   | ٠ |   |   |   |   |   |   |    |    |    |   |    |   |    |    |     |   |    |    |    | ٠  |    |   | ٠  |     |   |     |       |   |   |
|  | s | 1.5 |   |     |      |   |   |   |   |    |    |   |     |    |   |   | ٠ |   |   |   |    |    | ٠ | ٠ |   |   | ٠ | ٠ |   |   |   |   |   |    |    |    |   |    |   |    |    |     |   |    |    |    |    |    | ٠ | ٠  | - 4 | - | •   | e - 1 |   | ٠ |
|  | 1 | ۱·  | 1 |     |      |   |   |   |   |    |    |   |     |    |   |   |   |   |   |   |    |    |   |   |   |   | ٠ |   |   |   |   |   |   |    |    | ٠  |   |    |   |    |    |     |   |    |    |    | ٠  |    |   | ٠  | t   |   | • ] | ۱.    |   |   |
|  |   | ŀ   |   |     | <br> |   | ٠ |   |   | ٠  |    |   |     |    | ٠ |   |   |   |   |   |    |    |   |   | ٠ |   | ٠ |   | ٠ |   |   |   |   |    |    | ٠  |   |    |   |    |    |     |   |    |    |    | ٠  |    |   | ٠  | A   | ć |     |       |   |   |
|  |   | x   | ŀ |     | <br> |   |   |   |   |    |    |   |     |    |   |   | ٠ | ٠ |   |   |    |    | ٠ | ٠ |   |   | ٠ |   |   |   |   |   |   |    |    |    |   |    |   |    |    |     |   |    |    |    | ٠  |    | ٠ | ٠  |     | ~ |     |       |   | ٠ |
|  |   |     |   |     |      |   |   |   |   |    |    |   |     |    |   |   |   |   |   |   |    |    | ٠ | ٠ |   |   | ٠ |   |   |   |   | ٠ |   |    |    |    |   |    |   |    |    |     |   |    |    |    | ٠  | ٠  |   | ٠  |     |   |     |       |   | ٠ |
|  |   |     |   |     |      |   |   |   |   | 2  | ÷. |   | -   | 5  | 2 | • | 2 | ÷ | ÷ | 4 |    |    |   |   |   |   | ٠ |   |   |   |   |   | 1 |    | 2  | ٠  |   | 1  |   |    |    |     |   |    |    |    | ٠  |    |   | ۰. |     |   |     |       |   |   |
|  |   |     |   |     | <br> |   |   | - |   | ł  | Ŀ  | 1 | r., | -1 | 6 |   | z | Ł | ŀ |   | ۱· |    | - | ٠ |   |   | ٠ | - |   |   |   |   | 4 |    | 1, | ~  | ь | -  |   | ۶. | 2  | . 4 |   | ۰, | 5  | r  | ۰. | ^  | 5 | ы  |     | ٠ |     |       |   |   |
|  |   |     |   |     | <br> |   |   |   |   | ł  | L  | - | ۷,  | ,  | r | ، | F | ٦ | L | - |    |    | ٠ | ٠ |   |   | ٠ |   |   |   |   | ٠ | 4 |    | к  | J  |   | 1  |   | U  | J  | 1   |   | ń  | 1  | Ł  | 10 |    | Ł | я  |     |   |     |       |   |   |
|  |   |     |   |     | <br> |   |   |   |   | -> |    |   |     |    |   |   |   |   |   | 1 |    |    |   |   |   |   |   |   |   |   |   |   | 6 |    |    | ۰, | 1 |    |   | τ. | τ, |     | _ | 67 |    | ε. |    | τ. | 7 |    |     |   |     |       |   | ÷ |
|  |   |     |   |     |      |   |   |   |   |    |    |   |     |    |   |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |   |    |    |    |   |    |   |    |    |     |   |    |    |    |    |    |   |    |     |   |     |       |   |   |
|  |   |     |   |     |      |   |   |   |   |    |    |   |     |    |   |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |   |    |    |    |   |    |   |    |    |     |   |    |    |    |    |    |   |    |     |   |     |       |   |   |

Wenn der Ausgang noch eingeschaltet ist, blinkt **OP** on (Ausgang Ein) zweimal im Display, gefolgt von einer 2-3 Sekunden währenden Blinkanzeige der neuen "unverriegelten" Einstellungen (erst langsam, dann schneller), bevor die Änderung schließlich durchgeführt wird. Die LOCK Lampe erlischt, wenn die Änderung erfolgt ist.

Beim Loslassen der faste LOCK, während das Display blinkt, wird die Deaktivierung der LOCK Funktion abgebrochen.

Die Wahl eines anderen Bereichs bei aktiviertem LOCK ist nicht möglich. In diesem Fall erscheint kurz die Meldung **Unloc** im Display und die LOCK Lampe blinkt. Wird ein solcher Versuch bei eingeschaltetem Ausgang unternommen, erscheint zunächst die Meldung **turn off** im Display (zusammen mit blinkender Ausgangslampe), gefolgt von der Meldung **Unloc** (mit blinkender LOCK Lampe).

Der LOCK Status beim Einschalten entspricht dem Zustand beim letzten Ausschalten.

#### **Tracking - Spannung**



Durch Drücken auf V<sub>TRACK</sub> wird die Tracking-Funktion für die Spannung gewählt. Die beiden Ausgänge bleiben elektrisch getrennt, aber die Spannungsregler von Ausgang 1 (Master) setzen eine identische Spannung an Ausgang 2 (Slave). Die Stromregler von Master und Slave bleiben unabhängig.

Durch die elektrische Trennung können beide Ausgänge z. B. so eingerichtet werden, dass sie Tracking-Spannungen mit entgegengesetzter Polarität liefern, oder identische Spannungen mit unterschiedlichen Bezugspotentialen (z. B. Digitalmasse und Analogmasse).

 $V_{TRACK}$  kann nur aktiviert bzw. deaktiviert werden, wenn Ausgang 2 (Slave) ausgeschaltet ist. Beim Versuch die Funktion  $V_{TRACK}$  bei eingeschaltetem Slave-Ausgang zu deaktivieren, wird kurz die Meldung turn off angezeigt (die Anzeige OUTPUT blinkt). Durch Wahl von  $V_{TRACK}$  wird der Bereich von Ausgang 2 automatisch auf 60V/20A eingestellt; bei Deaktivierung von  $V_{TRACK}$  kehrt der Bereich von Ausgang 2 zu der Einstellung zurück, die vor der  $V_{TRACK}$  Aktivierung gewählt war.

Die Funktion LOCK des Master-Ausgangs arbeitet exakt wie oben beschrieben und regelt aufgrund der aktivierten Synchronregelung auch die Slave-Ausgangsspannung. Beachten Sie, dass bei Verwendung von Master LOCK nur die *Spannung* des Ausgangs "verriegelt" wird – die Regler für die *Stromabgabe* des Slaves bleiben unabhängig. Die LOCK Taste des Slave-Ausgangs wird ignoriert. Beim Drücken dieser Taste erscheint lediglich kurz die Meldung In trac auf der Slave-Anzeige.

Sie können auch bei aktivierter LOCK Funktion am Master vom Tracking-Betrieb (V<sub>TRACK</sub>) auf unabhängigen Betrieb zurückschalten. In diesem Fall bleiben die Einstellungen des Master-Ausgangs "verriegelt", die Einstellungen des Slaves jedoch nicht.

Der V<sub>TRACK</sub> Status beim Einschalten entspricht dem Zustand beim letzten Ausschalten.

Beachten Sie, dass beim CPX400D ein Auslösen des Überspannungsschutzes (OVP) an einem Ausgang im Spannungs-Tracking-Modus nur den jeweiligen Ausgang abschaltet. Der andere Ausgang bleibt eingeschaltet. Dies ist auch das Standardverhalten beim CPX400DP.

Beim CPX400DP ist es jedoch möglich, sowohl OVP and OCP (Überstromschutz) per Fernsteuerbefehlen so zu konfiguieren, dass beide Ausgänge bei OVP bzw. OCP ausgeschaltet werden – siehe Abschnitt "Fernsteuerbefehle". Eine solche Konfiguration ist dann für den Betrieb sowohl im Remote- als auch im Local-Modus gültig, bis sie durch einen anderen Fernsteuerbefehl bzw. durch einen Reset-Befehl (\*RST) geändet wird. Gleiches gilt, wenn der Netzschalter (POWER) auf Standby und dann wieder auf Ein geschaltet wird.

### Gleichzeitiges Ein- und Auschalten beider Ausgänge



Die Taste SYNCHRONOUS ON/OFF arbeitet zusätzlich zu den einzelnen OUTPUT Schaltern und erlaubt das gleichzeitige Ein- oder Ausschalten beider Ausgänge mit einem einzigen Tastendruck. Da diese Taste beide Ausgänge durch wiederholtes Drücken ein- bzw. ausschaltet, müssen beide Ausgänge den gleichen Zustand besitzen (d. h. Ein oder Aus), bevor die Taste verwendet werden kann. Andernfalls hat ein Drücken dieser Taste keine Wirkung.

# Ferngesteuerter Betrieb (nur CPX400DP)

Das Gerät kann über seine RS232-, USB-, LAN- oder GPIB-Schnittstellen ferngesteuert werden. Die USB-Fernsteuerung funktioniert ähnlich wie bei der RS232 Schnittstelle, jedoch über den USB-Anschluss. Die mit dem Gerät gelieferte Software richtet den steuernden Computer darauf ein, den USB-Anschluss als virtuellen COM-Port zu behandeln. Die Anwendungssoftware auf dem Computer kann dann über den COM-Port auf das Gerät zugreifen.

Die LAN-Schnittstelle entspricht 1.4 LXI (Lan eXtensions for Instrumentation) Core 2011. Eine Fernsteuerung über die LAN-Schnittstelle ist über das TCP/IP Sockets Protokoll möglich. Das Gerät enthält auch einen einfachen Web-Server mit Informationen zum Gerät, der die Konfiguration von einem Web-Browser aus ermöglicht. Eine einfache Befehlszeilensteuerung vom Browser aus ist ebenfalls möglich.

Alle Schnittstellen sind standardmäßig zu jeder Zeit aktiviert (wie von der LXI Spezifikation gefordert), der Zugang zu einzelnen Schnittstellen kann jedoch über die Konfigurationsoptionen auf den Webseiten eingeschränkt werden.

# Sperren der Schnittstellen

Alle Remote-Schnittstellen sind jederzeit aktiviert; dadurch braucht die aktive Schnittstelle nicht speziell gewählt werden und die LAN-Schnittstelle steht stets zur Verfügung (siehe LXI Spezifikation). Damit das Gerät nicht versehentlich gleichzeitig von zwei Schnittstellen gesteuert wird, enthält der Befehlssatz einen einfachen Sperr- und Freigabemechanismus. Die Sperrung wird automatisch aufgehoben, wenn eine Trennung festgestellt werden kann oder wenn die Taste "LOCAL" gedrückt wird. Der Zugriff auf die Schnittstellen kann auch über die Webseiten beschränkt werden.

Jede Schnittstelle kann durch Senden des Befehls "IFLOCK" eine exklusive Steuerung des Geräts anfordern. Die Sperre wird nur aufgehoben, wenn der Befehl "IFUNLOCK" von der aktuell gesperrten Schnittstelle gesendet wird. Andere Schnittstellen können den Schnittstellen-Status mit dem Befehl "IFLOCK?" abfragen. Die Antwort auf diese Befehle lautet "-1", wenn die Sperre bereits von einer anderen Schnittstelle in Anspruch genommen wird, "0" wenn die Schnittstelle frei ist und "1" wenn die die fragende Schnittstelle bereits gesperrt ist. Wird ein Befehl von einer Schnittstelle ohne Steuerrechte gesendet, der versucht den Gerätestatus zu ändern, so wird Bit 4 des Standard Event Status Registers und 200 in das Execution Error Register gesetzt, um darauf hinzuweisen, dass für die gewünschte Aktivität keine ausreichenden Rechte vorhanden sind.

*Hinweis:* Die Rechte für eine Schnittstelle können über die Webseite auch auf 'schreibgeschützt' oder auf 'kein Zugriff'gesetzt werden.

# Einstellen der Adresse

Die Adressierungsfähigkeit wird eigentlich nur von der GPIB Schnittstelle benötigt. Der ADDRESS?-Befehl kann jedoch von allen Schnittstellen zur einfachen Identifizierung des von einem bestimmten COM-Port (bei RS232 oder USB) bzw. TCP-Socket (bei LAN) gesteuerten Geräts verwendet werden. Beachten Sie, dass die LAN Schnittstelle auch eine getrennte Identifizierungsfunktion besitzt, die von der Webseite des Geräts aus zugänglich ist und dazu führt, dass das Gerät so lange blinkt, bis der Befehl beendet wird.

Die Adresse wird auf der Gerätevorderseite wie folgt eingestellt. Beginnen Sie bei ausgeschaltetem Gerät und schalten Sie das Gerät bei gedrückten Tasten für VIEW und LOCK von Ausgang 1 ein. Das Display zeigt Addr auf der Spannungsanzeige und nn auf der Stromanzeige, wobei nn die aktuelle Einstellung repräsentiert (Standardadresse Addr 11). Die Adresse kann mit den Tasten VIEW und LOCK im Bereich 1 bis 31 inklusive (ohne 0) jeweils durchgehend nach unten und oben gesetzt werden. Die Adresse wird bestätigt und der Vorgang beendet, indem Sie die Taste OVP gedrückt halten. Auf dem Display erscheinen etwas 2 Sekunden lang SEt und die neue Adresse. Nachdem die neue Adresse akzeptiert worden ist, geht das Display auf die normale Strom- und Spannungsanzeige zurück.

Die Adresse kann auch über die Webseite des Geräts eingestellt werden.

# Ferngesteuerter/Lokaler Betrieb

Nach dem Einschalten befindet sich das Gerät im Modus Lokalbetrieb, die REMOTE Anzeige leuchtet nicht. In diesem Zustand sind alle Einstellungen auf der Gerätevorderseite möglich. Wird das Gerät per Schnittstelle angesteuert und ein Befehl empfangen, schaltet das Gerät auf Fernbedienung und REMOTE wird aktiviert. In diesem Modus ist eine Bedienung nur über die Fernsteuerbefehle möglich. Die Einstellungen für V/I, V<sub>TRACK</sub> Status und Ausgangsstatus bleiben unverändert, nur LOCK wird deaktiviert (falls eingeschaltet) und beide Bereichseinstellungen werden auf 60V/20A gesetzt. Die Fernfühlereinstellungen richten sich nach den Schalterstellungen auf der Gerätevorderseite.

Das Gerät kann durch Drücken der LOCAL Taste wieder auf lokal umgeschaltet werden. Der Zustand hält so lange an, bis das Gerät wieder adressiert wird oder über die Schnittstelle ein weiteres Zeichen empfängt. Dann ist es wieder im Remote-Status. Wird der Lokal-Modus auf diese Weise oder über den Befehl LOCAL wiederhergestellt, so bleiben die zuletzt per Fernsteuerung empfangenen Werte für V/I erhalten. Die Funktion LOCK ist aktiviert und die Ausgänge verbleiben in ihrem jeweiligen Status.

Falls V<sub>TRACK</sub> durch Fernsteuerung eingestellt war, bleibt diese Funktion bei Wiederherstellung des Lokalmodus erhalten. Ausgang 1 ist VERRIEGELT, nicht aber Ausgang 2; dieser bleibt jedoch effektiv verriegelt, da er Ausgang 1 verfolgt.

# **RS232-Schnittstelle**

## Schnittstellenanschluss RS232

| Der 9-polige Steckverbinder (Typ D) für die serielle Schnittstelle befindet sich auf der |
|------------------------------------------------------------------------------------------|
| Geräterückwand. Die Pinbelegung ist wie folgt:                                           |

| Pin | Bez. | Beschreibung                                 |
|-----|------|----------------------------------------------|
| 1   | RI   | Passive Bestimmung (+V durch 10 k $\Omega$ ) |
| 2   | TXD  | Übertragungsdaten vom Gerät                  |
| 3   | RXD  | Empfangsdaten zum Gerät                      |
| 4   | CTS  |                                              |
| 5   | GND  | Signalmasse                                  |
| 6   | RTS  | Passive Bestimmung (+V durch 10 k $\Omega$ ) |
| 7   | DSR  | Keine interne Verbindung                     |
| 8   | DTR  |                                              |
| 9   | CD   | Keine interne Verbindung                     |

#### RS232-Anschlüsse

Die RS232 Schnittstelle muss mithilfe eines vollverdrahteten Kabels (männlich-weiblich 1:1) ohne überkreuzende Verbindungen an einen standardmäßigen PC-Port angeschlossen werden. Alternativ werden nur die Pins 2, 3 und 5 an den PC angeschlossen, doch müssen Verbindungen im PC-Anschluss zwischen den Pins 1, 4 und 6 sowie 7 und 8 hergestellt werden (siehe Diagramm).

| PC  | ) | 9 WAY D<br>FEMALE |             | INSTRUMENT | 9 WAY D<br>MALE |
|-----|---|-------------------|-------------|------------|-----------------|
| DCD |   | 10                |             |            | <b>○ 1</b>      |
| RX  |   | 20                |             |            | —O 2            |
| ΤХ  |   | зО                |             |            | —O 3            |
| DTR |   | 40                | 1           |            | ○ 4             |
| GND |   | 50                |             |            |                 |
| DSR |   | 60                |             |            | 06              |
| RTS |   | 70                |             |            | ○ 7             |
| CTS |   | 80                |             |            | 08              |
| RI  |   | 9()               | NULL OUT PC |            | 0 9             |

Die Baud-Rate ist für dieses Gerät mit 9600 festgelegt, die anderen Parameter haben folgende Werte:

| Startbits: 1 | Parität: keine |
|--------------|----------------|
| Datenbits: 8 | Stoppbits: 1   |

#### RS232-Zeichensatz

Aufgrund des erforderlichen XON/XOFF-Protokolls stehen zur Datenübertragung nur ASCIIkodierte Zeichen zur Verfügung, binäre Blöcke sind nicht zulässig. Bit 7 des ASCII-Codes wird ignoriert, d.h. als Low angenommen. In der Befehlsmnemonik wird nicht zwischen Groß- und Kleinschreibung unterschieden, sie kann auch vermischt werden. Die ASCII-Codes unter 20H (Leerzeichen) werden nicht verwendet. In diesem Handbuch steht 20H usw. für 20 hexadezimal usw. Das Gerät sendet XOFF, wenn 50 freie Bytes verbleiben und XON wenn sich dieser Wert auf 100 Bytes erhöht.

# **USB-Schnittstelle**

Der Einsatz der USB-Schnittstelle zur Fernsteuerung erfordert einen "Communications Device Class"-Treiber auf dem PC, um eine virtuelle COM-Port-Instanz bereitzustellen. Für Windows wird ein passender Treiber von Microsoft zur Verfügung gestellt, ist aber nicht standardmäßig installiert. Die Datei(.INF) zur Steuerung der Installation ist auf der mit dem Gerät gelieferten "Product Documentation"-CD enthalten. Derselbe Treiber wird jedoch auch von vielen anderen Geräten dieses Herstellers verwendet und kann bereits auf dem PC installiert sein.

Um den Treiber zum ersten Mal installieren, schalten Sie zuerst das Gerät ein und verbinden Sie dann den USB-Anschluss mit dem PC. Durch die "Plug-and-Play" Funktionalität unter Windows wird die am USB-Port angeschlossene neue Hardware normalerweise automatisch erkannt (möglicherweise nach einer etwas längeren Suche im Internet). Windows fragt daraufhin nach dem Pfad des entsprechenden Treibers. Folgen Sie den Windows Aufforderungen und wechseln Sie zur CD, dann in das Unterverzeichnis für dieses Produkt, und schließlich auf das USB-Driver-Unterverzeichnis darunter. Die Datei heißt USB\_ARM\_VCP\_xxx.INF, wobei xxx eine Versionsnummer ist. (Eine readme.pdf Datei befindet sich ebenfalls in diesem Verzeichnis, falls Sie weitere Hilfe benötigen.)

In einigen Fällen kann Windows dieses Verfahren nicht abschließen (vor allem in den neueren Versionen, bei denen zuerst das Internet nach der speziellen Vendor-ID und Produkt-ID durchsucht wird). In diesem Fall wird das Gerät im Geräte-Manager als "nicht voll funktionsfähig" angegeben. Wenn dies geschieht, klicken Sie dieses Gerät mit der rechten Maustaste an und wählen Sie "Treibersoftware aktualisieren…" und dann auf "Auf dem Computer nach Treibersoftware suchen…" und suchen Sie dann die INF-Datei auf der CD, wie oben beschrieben.

Sobald Windows den Treiber installiert hat, wird diesem Gerät eine COM-Port-Nummer zugeordnet. Diese Nummer hängt von früheren COM-Port-Zuweisungen auf diesem PC ab. Es kann notwendig sein, den Geräte-Manager zu verwenden, um sie zu entdecken. Jedes Gerät hat eine eindeutige USB-Kennung unter Windows. Es erhält stets die gleiche COM-Port-Nummer, wann immer es auf dem gleichen PC angeschlossen wird (unabhängig von der verwendeten physikalischen Schnittstellenbuchse), auch wenn der COM-Port ausgeblendet wird, wenn das Gerät nicht angeschlossen oder ausgeschaltet ist. Andere Geräte erhalten andere COM-Port-Nummern.

Beachten Sie, dass ein anderer PC nicht unbedingt die gleichen COM-Port-Nummer an ein bestimmtes Gerät zuweist (dies hängt von den bereits erfolgten Installationen ab), jedoch kann die Zuweisung im Geräte-Manager geändert werden.

Dieser virtuelle COM-Anschluss kann von Windows genau wie jeder andere normale COM-Port angesprochen werden (einschließlich eines Terminal-Emulators), ausgenommen dass die Baudrateneinstellung und andere Einstellungen des virtuellen COM-Ports nicht benötigt und deshalb ignoriert werden. Einige ältere Anwendungen funktionieren möglicherweise nicht mit den COM-Port-Nummern 3, 4 oder Nummern über 9. Verwenden Sie in diesem Fall den Geräte-Manager, um die Zuordnung zu ändern. Sobald der Treiber installiert ist, wird er über Windows Update in der üblichen Weise aktualisiert.

# LAN-Schnittstelle

Die LAN-Schnittstelle entspricht 1.4 LXI ( Lan eXtensions for Instrumentation) Core 2011 und umfasst die folgenden Schnittstellen und Protokolle. Da es durchaus möglich ist, die LAN-Schnittstelle derart falsch zu konfigurieren, dass ein Datenaustausch per LAN nicht mehr möglich ist, besitzt das Gerät auf der Rückseite einen versenkten Schalter, sodass ein Zurücksetzen auf die Werksvoreinstellung mithilfe des LCI (LAN Configuration Initialise) Mechanismus möglich ist. Standardmäßig versucht das Gerät sich Einstellungen über DHCP zu holen. Ist dies nach 30 Sekunden nicht erfolgreich (DHCP-Timeout) erfolgt ein Wechsel auf Auto-IP. Im unwahrscheinlichen Fall, dass keine Auto-IP Adresse gefunden werden kann, wird eine statische IP-Adresse (192.168.0.100) zugewiesen. Durch Zurücksetzen des LAN wird ein etwaiger Passwortschutz entfernt.

Weitere Informationen zu den LXI Spezifikationen finden Sie auf www.lxistandard.org/home.

# LAN Verbindung

Um die LAN-Schnittstelle verwendet zu können muss die IP-Adresse des Geräts bekannt sein Auf der mitgelieferten CD-ROM befindet sich ein Leitfaden für das LXI Discovery Tool, der Links für die neueste Version dieses Tools und die zugehörigen Downloads enthält. Das Tool ist eine Windows-PC-Anwendung, das verwendet werden kann, um die IP-Adressen oder Hostnamen aller angeschlossenen Geräte anzuzeigen, die dem VXI-11-Protokoll entsprechen oder Multicast Domain Name System (mDNS) Datensätze unterstützen. Die Verbindung über einen Router bietet den Vorteil, dass sich eine IP-Adresse erheblich schneller zuweisen lässt. Bei einer Direktverbindung mit dem PC findet die Zuweisung erst nach dem 30 Sekunden währenden DHCP-Timeout statt. Durch Doppelklick auf einen Eintrag in der Geräteliste wird der Web-Browser des PCs gestartet und die Homepage des jeweiligen Geräts angezeigt.

Zusätzlich sind Tools für die LAN Discovery im Rahmen der Programmpakete "National Instruments Measurement and Automation Explorer" sowie "Agilent Vee" vorhanden.

Beim Einschalten versucht das Gerät sich Einstellungen über DHCP zu holen. Ist dies nach 30 Sekunden nicht erfolgreich (DHCP-Timeout) erfolgt ein Wechsel auf Auto-IP. Im unwahrscheinlichen Fall, dass keine Auto-IP Adresse gefunden werden kann, wird eine statische IP-Adresse (192.168.0.100) zugewiesen. Während dieser Zeit leuchtet die LAN-Lampe über Ausgang 2 und bleibt an, sofern eine erfolgreiche LAN-Verbindung zustande gekommen ist. Ist jedoch nach Abschluss des obigen Vorgangs immer noch keine Verbindung vorhanden, oder wenn der LAN-Stecker abgezogen wurde, geht die LAN-Lampe aus (siehe Abschnitt "LAN-Fehler").

#### Webserver; Configuration des Passwortschutzes

Das Gerät enthält einen einfachen Webserver. Dieser liefert Informationen zum Gerät und ermöglicht die Konfiguration. Die Konfigurationsseite kann mit einem Passwort geschützt werden, um unbefugte Änderungen der Konfiguration für den Fernsteuerbetrieb zu verhindern.

Auf der eigentlichen Konfigurationsseite wird erklärt, wie das Passwort gesetzt werden kann. Das Passwort darf bis zu 15 Zeichen lang sein. Beachten Sie, dass der **Benutzername (User Name) Ieer bleiben muss**. Beim Zurücksetzen aller LAN-Parameter auf die Werksvoreinstellung über den LAN RESET Schalter auf der Geräterückseite wird auch das Passwort auf die Standardeinstellung (kein Passwort) zurückgesetzt.

Die Webseiten verfügen über eine Identifizierungsfunktion, sodass der Benutzer einen Identifizierungsbefehl zum Gerät senden kann. Daraufhin blinkt dessen Display, bis der Befehl aufgehoben wird.

#### **ICMP Ping-Server**

Das Gerät enthält einen ICMP-Server, um das Gerät entweder über den Hostnamen oder die IP-Adresse per Ping-Befehl anzusprechen.

#### VXI-11 Discovery Protokoll

Das Gerät unterstützt stark eingeschränkt das VXI-11 Protokoll, sodass lediglich eine Instrumentenerkennung möglich ist.

Das Gerät implementiert einen Sun RPC Port-Mapper aif TCP Port 111 und UDP Port 111 (siehe RPC1183). Folgende Aufrufe stehen zur Verfügung: NULL, GET PORT und DUMP.

Auf TCP Port 1024 wird ein sehr einfaches VXI-11 Protokoll implementiert, das zur Instrumentenerkennung ausreicht. Hier werden folgende Aufrufe unterstützt: CREATE LINK, DEVICE\_WRITE, DEVICE\_READ und DESTROY\_LINK.

Nach Herstellung der Verbindung werden alle weiteren Informationen vom Gerät ignoriert und es wird lediglich der Identifizierungs-String wie bei einem "\*IDN?" Befehl in folgender Form ausgegeben:

'Hersteller, Modell, Seriennr., X.xx - Y.yy'

Zum Beispiel:

#### THURLBY THANDAR, CPX400DP, 279730, 1.00 - 1.00

wobei 'X.xx' die Revisionsnummer der Main-Firmware und 'Y.yy' die Revisionsnummer der Interface-Firmware angibt. Die Interface-Firmware ist über den USB-Port vom Benutzer vor Ort aktualisierbar.

#### mDNS und DNS-SD Unterstützung

Multicast DNS bietet DNS-Dienste auch in Netzwerken ohne zentralen DNS-Server (oder DHCP-Server). Dies vereinfacht die Einrichtung eines einfachen LAN mit sinnvollen Hostnamen anstelle einer rohen IP-Adresse. Mit Service-Discovery können das Gerät und seine Dienste problemlos identifiziert werden.

Die vom Gerät bereitgestellten Services sind http (\_http.\_tcp) und lxi (\_lxi.\_tcp).

#### VISA Resource-Name

Aufgrund der eingeschränkten Unterstützung für das VXI-11 Protokoll (nur Discovery Protocol), muss das Gerät über seine Raw-Socket-Informationen aufgerufen werden, wenn es in Zusammenhang mit Anwendungen verwendet wird, die über einen VISA Resource-Namen kommunizieren. So hätte z. B. ein Gerät mit IP-Adresse 192.168.1.100 normalerweise den VISA Resource-Namen "TCPIP0::192.168.1.100::inst0::INSTR", der aber für dieses Gerät modifiziert werden muss auf "TCPIP0::192.168.1.100::9221::SOCKET", wobei 9221 der vom Gerät verwendete TCP-Port für Steuerung und Überwachung ist (siehe unten).

#### XML Identifikationsdokument URL

Wie von der LXI Norm gefordert, stellt das Gerät ein "XML Identification Document" bereit, das über einen GET Befehl unter "http://<hostname>:80/lxi/identification" abgefragt werden kann. Es entspricht dem LXI XSD Schema (siehe http://www.lxistandard.org/InstrumentIdentification/1.0) und dem W3C XML Schema (http://www.w3.org/XML/Schema). Dieses Dokument beschreibt das Gerät.

### **TCP Sockets**

Das Gerät verwendet 2 Sockets auf TCP Port 9221 für die Gerätesteuerung und Überwachung. An diesen Port werden die im Abschnitt 'Fernsteuerbefehle' beschriebenen Befehle gesendet. Die Antwort erfolgt über den gleichen Port. Eine Zeichenkette muss aus ein oder mehreren vollständigen Befehlen bestehen. Befehle können durch ein Semikolon (;) oder einen Zeilenvorschub getrennt werden. Ein Trennzeichen ist nicht erforderlich, da der TCP Rahmen vollständige Befehle enthält. Befehle können zwar mit Trennzeichen gesendet werden, dieses wird jedoch ignoriert. Jeder Befehl über TCP verhält sich, als ob er mit einem Command Terminator (ASCII Zeichen 0AH, Zeilenvorschub) abgeschlossen wurde.

### LAN Fehler

Wenn nach Herstellung einer LAN Verbindung ein Fehler festgestellt worden ist (z. B. gleiche IP-Adresse wie ein anderes Gerät im Netzwerk), geht die LAN-Lampe (über der Messanzeige für Ausgang 2) aus, bis der Fehler behoben wurde. Bei Auftreten eines LAN Fehlers muss die Gerätekonfiguration geprüft und ggf. korrigiert werden. Über einen versenkten Schalter auf der Rückseite (LAN RESET) kann das Gerät mittels LAN Configuration Initialise (LCI) Mechanismus auf die Werkseinstellung zurückgesetzt werden. Standardmäßig versucht das Gerät sich Einstellungen über DHCP zu holen. Ist dies nach 30 Sekunden nicht erfolgreich (DHCP-Timeout) erfolgt ein Wechsel auf Auto-IP. Im unwahrscheinlichen Fall, dass keine Auto-IP Adresse gefunden werden kann, wird eine statische IP-Adresse (192.168.0.100) zugewiesen.

Wenn überhaupt kein physischer LAN-Anschluss erkannt wird, bleibt die LAN-Lampe aus.

# **GPIB-Schnittstelle**

Der 24-polige Steckverbinder für die GPIB-Schnittstelle befindet sich auf der Geräterückseite. Die Stiftbelegung entspricht der Norm IEEE Std. 488.1-1987. Das Gerät entspricht den Normen IEEE Std. 488.1-1987 und IEEE Std. 488.2-1987.

#### **GPIB Befehlssätze**

Das Gerät ist mit folgenden IEEE 488.1 Befehlssätzen versehen:

| Source Handshake (Handshake-Quellenfunktion)                                                                                        | SH1 |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| Acceptor Handshake (Handshake-Senkenfunktion)                                                                                       | AH1 |
| Talker (Sprecherfunktion mit Serienabfrage und automatischer<br>Entadressierung, ohne Sekundäradresse und ohneNur-Sprechen-Betrieb) | T6  |
| Listener (Hörer-Funktion mit automatischer Entadressierung, ohne Sekundäradresse und ohne Nur-Hören-Betrieb)                        | L4  |
| Service Request (Bedienungsruf-Funktion)                                                                                            | SR1 |
| Remote Local (Fern- / Handbedienungs-Umschaltfunktion mit Verriegelung)                                                             | RL2 |
| Parallel Poll (Parallelabfrage-Funktion mit Ferneinstellung)                                                                        | PP1 |
| Device Clear (Rücksetz-Funktion inkl.                                                                                               | DC1 |
| Device Trigger (Auslöse-Funktion)                                                                                                   | DT0 |
| Controller (Controller-Funktion)                                                                                                    | C0  |
| Electrical Interface (Open-Collector-Treiber)                                                                                       | E2  |

### GPIB Fehlerbehandlung nach IEEE Std. 488.2 – Query Error Register

Der Fehler UNTERMINATED nach IEEE 488.2 (Kommunikation aktiviert, doch nichts zu berichten) wird wie folgt behandelt: Ist das Gerät auf Kommunikation gestellt, der Antwortformatierer jedoch nicht aktiv und die Eingangswarteschlange leer, so wird ein UNTERMINATED-Fehler generiert. Dies bewirkt, dass ein Query Error-Bit im Standard Event Status Register gesetzt, der Wert von 3 ins Query Error Register geschrieben und der Parser zurückgesetzt wird. Weitere Informationen entnehmen Sie bitte dem Abschnitt "Status-Berichterstattung".

Der Fehler INTERRUPTED nach IEEE 488.2 wird wie folgt behandelt: Wartet der Antwortformatierer auf das Senden einer Antwort und wurde vom Parser ein <PROGRAM MESSAGE TERMINATOR> gelesen oder enthält die Eingangswarteschlange mehr als eine END-Meldung, so wird das Gerät INTERRUPTED (unterbrochen) und eine Fehleranzeige generiert. Dies bewirkt, dass ein Query Error-Bit im Standard Event Status Register gesetzt, der Wert 1 ins Query Error Register geschrieben und der Antwortformatierer zurückgestellt wird, wodurch die Ausgangswarteschlange gelöscht wird. Jetzt beginnt der Parser die nächste <PROGRAM MESSAGE UNIT> der Eingangs-Warteschlange zu verarbeiten. Weitere Informationen entnehmen Sie bitte dem Abschnitt "Status-Berichterstattung".

Der Fehler DEADLOCK nach IEEE 488.2 wird wie folgt behandelt: Wartet der Antwortformatierer auf das Senden einer Antwort und wird die Eingangs-Warteschlange voll, so schaltet das Gerät auf DEADLOCK Status und eine Fehleranzeige wird generiert. Dies bewirkt, dass ein Query Error-Bit im Standard Event Status Register gesetzt, der Wert 2 ins Query Error Register geschrieben und der Antwortformatierer zurückgestellt wird, wodurch die Ausgangswarteschlange gelöscht wird. Jetzt beginnt der Parser die nächste <PROGRAM MESSAGE UNIT> der Eingangs-Warteschlange zu verarbeiten. Weitere Informationen entnehmen Sie bitte dem Abschnitt "Status-Berichterstattung".

#### **GPIB** Parallelabfrage (Parallel Poll)

Das Gerät besitzt eine vollständige Parallelabfrage. Das Parallel Poll Enable Register wird gesetzt damit festgelegt wird, welche Bits im Status Byte Register zur Bildung der lokalen Meldung "ist" dienen. Das Parallel Poll Enable Register (Parallelabfrage-Aktivierungsregister) wird durch den Befehl \*PRE <NRF> gesetzt und mit dem Befehl \*PRE? ausgelesen. Der Wert im Parallel Poll Enable Register wird mit dem Status Byte Register AND verknüpft. Lautet das Ergebnis Null, so beträgt der Wert von "ist" 0, ansonsten ist der Wert von "ist" 1.

Das Gerät muss außerdem so konfiguriert sein, dass der Wert von "ist" während einer Parallelabfrage an das Steuergerät zurückgeschickt werden kann. Die Konfigurierung des Gerätes erfolgt vom Steuergerät, indem letzteres einen Parallel Poll Configure-Befehl (PPC) mit anschließendem Parallel Poll Enable-Befehl (PPE) sendet. Die Bits des PPE-Befehls sind unten aufgeführt:

| bit 7 | Х     | Unbeachtet lassen                            |
|-------|-------|----------------------------------------------|
| bit 6 | 1     |                                              |
| bit 5 | 1     | Aktivierung der Parallelabfrage              |
| bit 4 | 0     |                                              |
| bit 3 | Sense | Wert des Antwortbits: $0 = low$ , $1 = high$ |
| bit 2 | ?     |                                              |
| bit 1 | ?     | Bitposition der Antwort                      |
| bit 0 | ?     |                                              |

*Beispiel:* Um an Bitposition 1 das RQS-Bit (Bit 6 des Status Byte Register) mit 1, wenn wahr, und mit 0, wenn nicht wahr, als Antwort auf eine Parallel Poll-Operation auszugeben, senden Sie folgende Befehle

\*PRE 64<pmt>, dann PPC, gefolgt von 69H (PPE)

Die Antwort auf die Parallelabfrage vom Gerät lautet dann 00H, wenn RQS gleich 0 ist, und 01H, wenn RQS gleich 1 ist.

Während der Parallelabfrageantwort sind die DIO-Schnittstellenleitungen mit einem ohmschen Abschlusswiderstand versehen (passiver Abschluss). Dadurch können sich mehrere Geräte, entweder in Wired-AND- oder Wired-OR-Konfiguration, dieselbe Position für das Antwortbit teilen. Weitere Informationen entnehmen Sie bitte IEEE 488.1.

# Statusberichterstattung

Für jede Schnittstelleninstanz wird ein getrenntes Fehler- und Statusmodell geführt. Eine Schnittstelleninstanz wird als eine mögliche Verbindung definiert. Bei USB, RS232 und GPIB handelt es sich grundsätzlich um Einzelverbindungen, die jeweils eine Schnittstelleninstanz darstellen. Dagegen ermöglicht LAN mehrere Verbindungen gleichzeitig und bildet daher mehrfache Schnittstelleninstanzen. Zwei Schnittstelleninstanzen werden den beiden TCP-Socket Schnittstellen zugewiesen, eine weitere dem Webseiten-Interface. Durch das getrennte Modell für jede Schnittstelle wird sichergestellt, dass Daten nicht verloren gehen, da viele Befehle (z. B. '\*ESR?') den Inhalt beim Schreiben löschen.

Der Fehlerstatus wird in Registern festgehalten. Diese werden im Folgenden beschrieben und im Statusmodell am Kapitelende gezeigt.

## Standard Event Status und Standard Event Status Enable Register

Diese beiden Register sind gemäß der Norm IEEE 488.2 ausgeführt. Bits, die im Standard Event Status Register gesetzt werden und Bits entsprechen, die im Standard Event Status Enable Register gesetzt wurden, bewirken, dass das ESB-Bit im Status Byte Register gesetzt wird.

Das Standard Event Status Register wird mit dem Befehl \*ESR? ausgelesen und gelöscht. Das Standard Event Status Enable Register wird mit dem Befehl \*ESE <NRF> gesetzt und mit dem Befehl \*ESE? ausgelesen.

Es handelt sich um ein Bitfeld mit folgenden Bits.

- Bit 7: Power On (Einschalten). Wird gesetzt, wenn das Gerät zum ersten Mal eingeschaltet wird.
- Bit 6: Benutzeranfrage (Nicht belegt).
- Bit 5: Command Error (Befehlsfehler). Wird gesetzt, wenn ein Syntaxfehler in einem Befehl vom Bus festgestellt wird. Der Parser wird zurückgesetzt und fährt mit dem nächsten, eingehenden Byte fort
- Bit 4: Execution Error (Ausführungsfehler). Wird gesetzt, wenn ein Fehler bei der Ausführung eines vollständig interpretierten Befehls auftritt. Die entsprechende Fehlernummer wird im Execution Error Register gemeldet (siehe Abschnitt "Fehlermeldungen").
- Bit 3: "Verify Timeout" Fehler. Wird gesetzt, wenn ein Parameter verifiziert werden soll, der jeweilige Wert aber nicht innerhalb von 5 Sekunden erreicht ist (z. B. wenn die Ausgangsspannung durch einen großen Kondensator am Ausgang verzögert wurde).
- Bit 2: Query Error (Abfragefehler). Wird gesetzt, wenn ein Abfragefehler auftritt. Die entsprechende Fehlernummer wird im Query Error Register gemeldet (siehe Abschnitt Query Error Register).
- Bit 1: Nicht belegt.
- Bit 0: Operation Complete (Vorgang abgeschlossen). Wird als Antwort auf den \*OPC-Befehl gesetzt.

## Execution Error Register (Ausführungsfehlerregister)

Das Register enthält eine Nummer, die den letzten Fehler beim Ansprechen der aktuellen Schnittstelle repräsentiert. Das Execution Error Register wird mit dem EER?-Befehl ausgelesen und gelöscht. Beim Einschalten wird dieses Register für alle Schnittstelleninstanzen auf 0 gesetzt.

Die Fehlermeldungen haben folgende Bedeutung:

- 0: Es liegt kein Fehler vor.
- 1-9: Interner Hardware-Fehler erkannt.

- 100: Range Error (Bereichsfehler). Der gesendete numerische Wert ist nicht zulässig. Dazu gehören auch Werte, die für den jeweiligen Parameter zu groß oder zu klein sind, sowie nicht ganzzahlige Werte, wenn nur Ganzzahlen erlaubt sind.
- 101: Der Abruf eingerichteter Daten wurde angefordert, doch sind die Daten im angegebenen Speicher korrupt. Damit wird entweder ein Hardwarefehler oder eine vorübergehende Datenkorruption angezeigt, die durch erneutes Schreiben von Daten in den Speicher korrigiert werden kann.
- 102: Der Abruf eingerichteter Daten wurde angefordert, doch enthält der angegebene Speicher keine Daten.
- 103: Es wurde versucht einen Befehl für den zweiten Ausgang zu lesen oder zu schreiben, wenn dieser Ausgang nicht zur Verfügung steht. Dies tritt normalerweise auf wenn versucht wird einen zweiten Ausgang bei einem Einzelnetzgerät bzw. bei einem Doppelnetzgerät im Parallelbetrieb zu programmieren.
- 104: Befehl nicht gültig, wenn der Ausgang eingeschaltet ist. So erzeugt z. B. der Befehl CONFIG <NRF> zum Wechsel des Betriebsmodus den Fehler 104, wenn nicht zuerst Ausgang 2 ausgeschaltet wurde.
- 200: Read Only: (Schreibgeschützt) Es wurde versucht die Geräteeinstellungen von einer Schnittstelle ohne Schreibrechte aus zu ändern (siehe Kapitel "Sperren der Schnittstellen").

### Limit Event Status und Limit Event Status Enable Registers

Für Einzelnetzgeräte existiert nur ein Limit Event Status Register, für Doppelnetzgeräte (außer im Parallelbetrieb) sind zwei vorhanden. Diese werden mit 'LSR1?' bzw. 'LSR2?' gelesen und gelöscht. Beim Einschalten werden diese Register zuerst auf 0 und dann sofort auf den neuen Limit Status gesetzt.

Bits, die im Limit Event Status Register gesetzt werden und Bits entsprechen, die im Limit Event Status Enable Register gesetzt wurden, bewirken, dass das LIM1 oder LIM2 Bit im Status Byte Register gesetzt wird.

- Bit 7: Zur späteren Verwendung reserviert.
- Bit 6: Wird gesetzt, wenn ein Auslöser aufgetreten ist, der nur von der Gerätevorderseite aus oder durch Trennen und Wiederanlegen der Netzspannung zurückgesetzt werden kann.
- Bit 5: Zur späteren Verwendung reserviert.
- Bit 4: Wird gesetzt, wenn der Ausgang die Leistungsgrenze erreicht (ungeregelter Modus).
- Bit 3: Wird gesetzt, wenn ein Auslöser aufgrund eines Überstroms am Ausgang aufgetreten ist.
- Bit 2: Wird gesetzt, wenn ein Auslöser aufgrund einer Überspannung am Ausgang aufgetreten ist.
- Bit 1: Wird gesetzt, wenn der Strombegrenzungswert erreicht ist (Konstantstrombetrieb).
- Bit 0: Wird gesetzt, wenn der Spannungsbegrenzungswert erreicht ist (Konstantspannungsbetrieb).

#### Status Byte Register und Service Request Enable Register

Diese beiden Register sind gemäß der Norm IEEE 488.2 ausgeführt. Bits, die im Status Byte Register gesetzt wurden und den Bits entsprechen, die im Service Request Enable Register gesetzt wurden, bewirken, dass das RQS/MSS-Bit im Status Byte Register gesetzt wird, wodurch ein Service Request auf dem Bus generiert wird.

Das Status Byte Register wird entweder mittels dem \*STB?-Befehl abgefragt, der MSS in Bit 6 zurücksendet, oder aber mittels eines Serial Poll (Serienabfrage), der RQS in Bit 6 zurücksendet. Das Service Request Enable Register wird mit dem Befehl \*SRE <NRF> gesetzt und mit dem Befehl \*SRE? gelesen.

- Bit 7 Nicht belegt.
- Bit 6 RQS/MSS. Dieses Bit, das in der Norm IEEE 488.2 definiert ist, enthält sowohl die Requesting Service-Meldung (Serviceanforderung) als auch die Master Status Summary-Meldung. Als Antwort auf ein Serial Poll (Serienabfrage) wird RQS und als Antwort auf den Befehl \*STB? wird MSS zurückgesendet.
- Bit 5 ESB. Das Event Status Bit (Ereignis-Statusbit). Dieses Bit wird gesetzt, wenn sich gesetzte Bits im Standard Event Status Register auf gesetzte Bits im Standard Event Status Enable Register beziehen.
- Bit 4 MAV. Das Message Available Bit (Meldung vorhanden). Dieses Bit wird gesetzt, wenn das Gerät eine fertig formatierte Antwort zum Versenden an den Controller bereithält. Das Bit wird zurückgesetzt, nachdem der Response Message Terminator gesendet wurde.
- Bit 3 Nicht belegt.
- Bit 2 Nicht belegt.
- Bit 1 LIM2. Wird gesetzt, wenn im Limit Event Status Register 2 Bits gesetzt sind, die im Limit Event Status Enable Register 2 entsprechend ebenfalls gesetzt wurden.
- Bit 0 LIM1. Wird gesetzt, wenn im Limit Event Status Register 1 Bits gesetzt sind, die im Limit Event Status Enable Register 1 entsprechend ebenfalls gesetzt wurden.



### Standardeinstellungen für Einschaltvorgang und Fernsteuerung

Beim Einschalten des Gerätes werden folgende Statuswerte gesetzt:

| Status Byte Register                    | = 0                                           |
|-----------------------------------------|-----------------------------------------------|
| Service Request Enable Register †       | = 0                                           |
| Standard Event Status Register          | = 128 (nach Setzen des Bits [PON-Bit gesetzt) |
| Standard Event Status Enable Register † | = 0                                           |
| Execution Error Register                | = 0                                           |
| Query Error Register                    | = 0                                           |
| Parallel Poll Enable Register †         | = 0                                           |

†□ Die mit diesem Zeichen versehenen Register beziehen sich spezifisch auf den GPIB-Teil des Gerätes und sind nur bedingt für andere Schnittstellen nutzbar.

Das Gerät befindet sich zunächst im lokalen Modus mit aktivierten Steuerelementen auf der Vorderseite.

Die Geräteparameter beim Einschalten sind dieselben wie beim letzten Ausschalten des Geräts, mit Ausnahme des Ausgangsstatus. Standardmäßig ist dieser beim Einschalten des Geräts immer deaktiviert, kann aber vom Benutzer so eingerichtet werden, dass er den gleichen Status wie beim letzten Ausschalten des Geräts annimmt (siehe Abschnitt "Einschalten" im Kapitel "Manueller Betrieb").

Der Schnittstellenbefehl \*RST (Reset) setzt das Gerät auf die Standardeinstellungen für den ferngesteuerten Betrieb zurück.

Dies bezieht sich auf folgende Einstellung:

 $V_{out}$ =1V,  $I_{out}$ =1A, DeltaV=10mV, DeltaI=10mA, Lock deaktiviertg,  $V_{TRACK}$  deaktiviert, OVP = 66V & OCP = 22A.

Die Einstellungen für Fernschnittstelle und Ausgangsstatus beim Einschalten bleiben durch \*RST unverändert.

Die Fernfühlereinstellungen richten sich nach den Schalterstellungen auf der Gerätevorderseite.

# Fernsteuerbefehle (nur CPX400DP)

# **RS232/USB Fernsteuerungsformat**

Der RS232-Eingang des Gerätes wird über eine 256 Byte große Warteschlange gepuffert. Dies erfolgt unter Verwendung eines Interrupts, quasi im Hintergrund und unabhängig zu allen anderen Gerätefunktionen. Befinden sich etwa 200 Zeichen in der Warteschlange, so sendet das Gerät ein XOFF. XON wird gesendet, wenn wieder 100 Bytes in der Warteschlange frei geworden sind. Diese Schlange enthält die "Rohdaten" (syntaktisch noch nicht analysiert), die der Parser nach Bedarf übernimmt. Befehle (und Abfragen) werden der Reihe nach ausgeführt, und der Parser startet einen neuen Befehl erst, wenn der vorherige Befehl bzw. die vorherige Abfrage vollständig abgeschlossen ist. RS232 Antworten auf Befehle oder Abfragen werden sofort gesendet; es gibt keine Ausgabeschlange.

Der USB-Eingang entspricht USB 2.0 Full Speed (volle Geschwindigkeit).

Der LAN-Eingang des Gerätes wird über eine 1500 Byte große Warteschlange gepuffert. Dies erfolgt unter Verwendung eines Interrupts, quasi im Hintergrund und unabhängig zu allen anderen Gerätefunktionen. Die LAN-Schnittstelle entspricht 1.4 LXI (LAN eXtensions for Instrumentation) Core 2011.

Befehle müssen in der Form gesendet werden, die in der Befehlsliste festgelegt ist, und immer mit dem Befehlsabschlusscode 0AH (Line Feed, LF) enden. Befehle können in Gruppen gesendet werden, wenn die einzelnen Befehle durch den Code 3BH (;) von einander getrennt sind. Die Gruppe muss mit dem Befehlsabschlusscode 0AH (Line Feed, LF) enden.

Antworten vom Gerät an den Controller werden in der Form gesendet, die in der Befehlsliste festgelegt ist. Jede Antwort muss mit einem <RESPONSE MESSAGE TERMINATOR> enden, d.h. dem Code 0DH (Carriage Return, CR), gefolgt von 0AH (Line Feed, LF).

<WHITE SPACE> ist mit den Zeichencodes 00H bis einschließlich 20H definiert.

<WHITE SPACE> wird ignoriert, außer bei Befehlsunterscheidung, d. h. "\*C LS" ist nicht gleich "\*CLS".

Bei allen Zeichen wird das höchste Bit ignoriert.

Die Befehle unterscheiden nicht zwischen Groß-/Kleinschreibung.

# **GPIB** Fernbedienungsformate

Die GPIB Eingang des Gerätes wird über eine 256 Byte große Warteschlange gepuffert. Dies erfolgt unter Verwendung eines Interrupts, quasi im Hintergrund und unabhängig zu allen anderen übrigen Gerätefunktionen. Diese Warteschlange enthält die rohen, d. h. noch nicht mittels des Parsers bearbeiteten Daten. Befehle (und Abfragen) werden der Reihe nach ausgeführt, und der Parser startet einen neuen Befehl erst, wenn der vorherige Befehl bzw. die vorherige Abfrage vollständig abgeschlossen ist. Eine Sende-Warteschlange gibt es nicht, dies bedeutet, dass der Antwort-Formatierer, falls erforderlich unbegrenzt lange wartet. Erst dann setzt der Parser mit der Abarbeitung des nächsten Befehls aus der Eingabe-Warteschlange fort.

Befehle werden vom Steuergerät als <PROGRAM MESSAGES> gesendet, wobei jede Meldung aus null oder mehr <PROGRAM MESSAGE UNIT> -Elementen besteht, die durch <PROGRAM MESSAGE UNIT SEPARATOR> -Elemente voneinander getrennt sind.

Ein <PROGRAM MESSAGE UNIT> ist jeder Befehl in der Fernbedienungs-Befehlsliste.

Ein <PROGRAM MESSAGE UNIT SEPARATOR> ist das Semikolon ";" (3BH).

<PROGRAM MESSAGES> werden von <PROGRAM MESSAGE TERMINATOR>-Elementen voneinander getrennt, die folgende Form haben können:

NLDas Zeichen New Line (0AH), d.h. neue ZeileNL^ENDDas Zeichen New Line mit der END-Meldung.^ENDDie END-Meldung mit dem letzten Zeichen der Meldung.

Antworten vom Gerät an das Steuergerät werden als <RESPONSE MESSAGES> gesendet. Eine <RESPONSE MESSAGE> besteht aus einer <RESPONSE MESSAGE UNIT> mit anschließendem <RESPONSE MESSAGE TERMINATOR>.

Das Zeichen New Line mit der END-Meldung NL^END ist ein <RESPONSE MESSAGE TERMINATOR>.Jede Abfrage führt zu einer bestimmten <RESPONSE MESSAGE>. Diese Meldungen sind zusammen mit den Abfragebefehlen in der Liste der Fernsteuerbefehle aufgeführt.

<WHITE SPACE> wird ignoriert, außer bei Befehlsunterscheidung, d. h. "\*C LS" ist nicht gleich "\*CLS". WHITE SPACE> ist mit den Zeichencodes 00H bis einschließlich 20H definiert, mit Ausnahme des Codes für "neue Zeile" (0AH).

Bei allen Zeichen wird das höchste Bit ignoriert.

Die Befehle unterscheiden nicht zwischen Groß-/Kleinschreibung.

# Befehlsliste

In diesem Abschnitt sind alle Befehle und Abfragen für dieses Gerät aufgeführt.

Beachten Sie, dass es keine abhängigen Parameter, gekoppelten Parameter, überlappenden Befehle, "Ausdrucksprogramm-Datenelemente" oder zusammengesetzte Befehlsprogrammköpfe gibt und dass jeder Befehl vollständig abgearbeitet ist, bevor der nächste Befehl gestartet wird. Alle Befehle sind sequentiell, und die "Operation abgeschlossen"-Nachricht wird in allen Fällen sofort nach der Ausführung generiert.

Folgende Nomenklatur wird verwendet:

| <rmt></rmt> | <response message="" terminator=""></response> | (Antwortabschluss) | ) |
|-------------|------------------------------------------------|--------------------|---|
|-------------|------------------------------------------------|--------------------|---|

- <NRF> Sämtliche Formate einer Zahl werden akzeptiert, wie z.B. 12, 12,00, 1,2 e1 und 120 e-1 für 12. Jede Zahl wird nach ihrem Empfang je nach erforderlicher Genauigkeit konvertiert, die ihrer Verwendung entspricht und dann gerundet, um den Wert des Befehls zu erhalten.
- <NR1> Zahl ohne Dezimalstelle, d.h. Ganzzahl (Integer)
- <NR2> Eine Zahl mit Festkomma, z.B. 11,52; 0,78 usw.
- <N> Die Nummer des Ausgangs (1 oder 2) oder Statusregisters, auf die sich der Befehl bezieht. '1' ist der Master (linker Ausgang) und '2' der Slave (rechter Ausgang).

<CPD> <CHARACTER PROGRAM DATA>

<CRD> <CHARACTER RESPONSE DATA>

Befehle, die mit \* beginnen, sind die in der Norm IEEE 488.2 als Common Commands (allgemeine Befehle) aufgeführten Befehle. Sie funktionieren alle mit den anderen Schnittstellen, sind jedoch zum Teil nur von geringem Nutzen.

#### Gerätespezifische Befehle

Bei Befehlen, die verifiziert werden sollen ('WITH VERIFY'), ist die Operation erst dann abgeschlossen, wenn der einzustellende Paramter den erforderlichen Wert innerhalb von +/-5 % oder +/-10 Zählschritten erreicht hat (je nachdem welcher Wert größer ist). Werden diese Grenzwerte nicht innerhalb von 5 Sekunden erreicht, so wird das "Verify Timeout" Bit (Bit 3) im Standard Event Status Register gesetzt und die Operation gilt nach Ablauf dieses "Timeouts" als abgeschlossen.

Das "Operation Complete Bit" (Bit 0) im Standard Event Status Register wird ausschließlich mit dem OPC Befehl gesetzt. Der Befehl \*OPC (oder \*OPC?) kann zur Synchronisation der angeschlossenen Geräte verwendet werden.

V<N> <NRF> Ausgangsspannung auf <N> bis <NRF> Volt setzen

V<N>V <NRF> Ausgangsspannung auf <N> bis <NRF> Volt setzen, mit Verifizierung

| OVP <n> <nrf></nrf></n>        | Auslösepunkt des Ausgangs <n> für den Überspannungsschutz auf <nrf> Volt setzen</nrf></n>                                                                                                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I <n> <nrf></nrf></n>          | Strombegrenzung des Ausgangs <n> auf <nrf> Ampere setzen</nrf></n>                                                                                                                                           |
| OCP <n> <nrf></nrf></n>        | Auslösepunkt des Ausgangs <n> für den Überstromschutz auf <nrf> Ampere setzen</nrf></n>                                                                                                                      |
| V <n>?</n>                     | Eingestellte Spannung des Ausgangs <n> rückmelden<br/>– Antwort ist V <n> <nr2><rmt> mit <nr2> in Volt</nr2></rmt></nr2></n></n>                                                                             |
| I <n>?</n>                     | Eingestellte Strombegrenzung des Ausgangs <n> rückmelden<br/>– Antwort ist I <n> <nr2><rmt> mit <nr2> in Ampere</nr2></rmt></nr2></n></n>                                                                    |
| OVP <n>?</n>                   | Überspannungseinstellung des Ausgangs <n> rückmelden<br/>– Antwort ist VP<n> <nr2><rmt> mit <nr2> in Volt</nr2></rmt></nr2></n></n>                                                                          |
| OCP <n>?</n>                   | Überstromeinstellung des Ausgangs <n> rückmelden<br/>– Antwort ist CP<n> <nr2><rmt> mit <nr2> in Ampere</nr2></rmt></nr2></n></n>                                                                            |
| V <n>O?</n>                    | Erfasste Ausgangsspannung des Ausgangs <n> rückmelden<br/>– Antwort ist <nr2>V<rmt> mit <nr2> in Volt</nr2></rmt></nr2></n>                                                                                  |
| I <n>O?</n>                    | Erfasste Ausgangsspannung des Ausgangs <n> rückmelden<br/>– Antwort ist <nr2>A<rmt> mit <nr2> in Ampere</nr2></rmt></nr2></n>                                                                                |
| DELTAV <n><br/><nrf></nrf></n> | Schrittgröße der Ausgangsspannung für Ausgang <n> auf <nrf> Volt setzen</nrf></n>                                                                                                                            |
| DELTAI <n><br/><nrf></nrf></n> | Schrittgröße des Ausgangsstroms für Ausgang <n> auf <nrf> Ampere setzen</nrf></n>                                                                                                                            |
| DELTAV <n>?</n>                | Schrittgröße der Ausgangsspannung für Ausgang <n> rückmelden – Antwort ist<br/>DELTAV<n> <nr2><rmt> mit <nr2> in Volt.</nr2></rmt></nr2></n></n>                                                             |
| DELTAI <n>?</n>                | Schrittgröße des Ausgangsstroms für Ausgang <n> rückmelden – Antwort ist<br/>DELTAI<n> <nr2><rmt> mit <nr2> in Ampere.</nr2></rmt></nr2></n></n>                                                             |
| INCV <n></n>                   | Ausgangsspannung für Ausgang <n> um die Schrittgröße für Ausgang <n><br/>erhöhen</n></n>                                                                                                                     |
| INCV <n>V</n>                  | Ausgangsspannung für Ausgang <n> um die Schrittgröße für Ausgang <n><br/>erhöhen und verifizieren</n></n>                                                                                                    |
| DECV <n></n>                   | Ausgangsspannung für Ausgang <n> um die Schrittgröße für Ausgang <n><br/>senken</n></n>                                                                                                                      |
| DECV <n>V</n>                  | Ausgangsspannung für Ausgang <n> um die Schrittgröße für Ausgang <n><br/>senken und verifizieren</n></n>                                                                                                     |
| INCI <n></n>                   | Strombegrenzung für Ausgang <n> um die Schrittgröße für Ausgang <n> erhöhen</n></n>                                                                                                                          |
| DECI <n></n>                   | Strombegrenzung für Ausgang <n> um die Schrittgröße für Ausgang <n> senken</n></n>                                                                                                                           |
| OP <n> <nrf></nrf></n>         | Ausgang <n> auf Ein/Aus stellen, wobei <nrf> folgende Bedeutung hat:<br/>0=OFF, 1=ON</nrf></n>                                                                                                               |
| OPALL <nrf></nrf>              | Alle Ausgänge gleichzeitig auf Ein/Aus stellen wobei <nrf> folgende Bedeutung hat: 0=ALLE AUS, 1=ALLE EIN.</nrf>                                                                                             |
|                                | Wenn OPALL alle Ausgänge auf ON setzt, bleiben alle bereits eingeschalteten<br>Ausgänge weiterhin ON. Wenn OPALL alle Ausgänge auf OFF setzt, bleiben alle<br>bereits ausgeschalteten Ausgänge weiterhin OFF |

| OP <n>?</n>               | Rückmeldung des Ein/Aus-Status für Ausgang <n>.<br/>Anwort ist <nr1><rmt> wobei 1 = ON, 0 = OFF.</rmt></nr1></n>                                                                                                                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRIPRST                   | Versuch des Löschens aller Auslösebedingungen.                                                                                                                                                                                                                                                                                             |
| LSR <n>?</n>              | Abfragen und Löschen des Limit Event Status Register <n>.<br/>Das Antwortformat hat die Form <nr1><rmt>. Weitere Informationen zur Antwort<br/>entnehmen Sie bitte dem Abschnitt "Statusberichterstattung".</rmt></nr1></n>                                                                                                                |
| LSE <n> <nrf></nrf></n>   | Wert von LSE <n>, Limit Status Enable Register LSE<n>, auf <nrf> setzen</nrf></n></n>                                                                                                                                                                                                                                                      |
| LSE <n>?</n>              | Gibt den Wert von LSE <n>, Limit Status Enable Register LSE<n> aus<br/>– Antwort ist <nr1><rmt></rmt></nr1></n></n>                                                                                                                                                                                                                        |
| SAV <n> <nrf></nrf></n>   | Die aktuelle Einstellung von Ausgang <n> mit der durch <nrf> angegebenen<br/>Speicher-Nr. speichern, wobei <nrf> die Werte 0-9 annehmen kann</nrf></nrf></n>                                                                                                                                                                               |
| RCL <n> <nrf></nrf></n>   | Eine Einstellung für Ausgang <n> mit der Speicher-Nr. <nrf> aufrufen, wobei <nrf> die Werte 0-9 annehmen kann</nrf></nrf></n>                                                                                                                                                                                                              |
| CONFIG <nrf></nrf>        | Setzt den Betriebsmodus, wobei <nrf> auf 2 gesetzt wird, um die Ausgänge<br/>unabhängig zu betreiben, und auf 0, um die Tracking-Funktion für die Spannung<br/>zu aktivieren.</nrf>                                                                                                                                                        |
| CONFIG?                   | Meldet den Betriebsstatus. Die Antwort ist <nr1><rmt>, wobei &lt; nr1&gt; 2 meldet,<br/>wenn die Ausgänge unabhängig betrieben werden, und 0, wenn die Tracking-<br/>Funktion für die Spannung aktiviert ist.</rmt></nr1>                                                                                                                  |
| RATIO <nrf></nrf>         | Setzt das Verhältnis von Ausgang 2 (Slave) zu Ausgang 1 (Master) im Tracking-<br>Betrieb auf <nrf>, wobei <nrf> das Verhältnis in Prozent angibt (0 bis 100).<br/>Das Verhältnis kann jederzeit gesetzt werden, hat aber keine Wirkung, bis die<br/>Tracking-Funktion für die Spannung aktiviert ist (durch CONFIG &lt;0&gt;).</nrf></nrf> |
| RATIO?                    | Abfrage des Verhältnisses von Ausgang 2 (Slave) zu Ausgang 1 (Master) im Tracking-Betrieb. Antwort ist <nrf><rmt>, wobei <nrf> das Verhältnis in Prozent angibt (0 bis 100).</nrf></rmt></nrf>                                                                                                                                             |
| TRIPCONFIG<br><nrf></nrf> | Legt den Modus für OVP und OCP bei Betrieb im Spannungs-Tracking-Modus<br>fest, wobei <nrf> auf 0 gesetzt wird, wenn die Ausgänge unabhängig<br/>abgeschaltet werden sollen, und auf 1, wenn beide Ausgänge bei OVP bzw. OCP<br/>gleichzeitig abgeschaltet werden sollen.</nrf>                                                            |
| TRIPCONFIG?               | Meldet den OVP/OCP Auslösemodus bei Betrieb im Spannungs-Tracking-Modus.<br>Die Antwort ist <nr1><rmt>, wobei <nr1> = 0 bei Unabhängigkeit der Ausgänge<br/>und = 1, wenn beide Ausgänge bei OVP bzw. OCP abgeschaltet werden.</nr1></rmt></nr1>                                                                                           |

# System- und Statusbefehle

| *CLS             | Status löschen. Löscht die Statusstruktur. Auf diese Weise wird das Status Byte Register indirekt gelöscht.                                                                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EER?             | Abfragen und Löschen des Execution Error Registers. Das Antwortformat hat die Form nr1 <rmt>.</rmt>                                                                                                                                                                                               |
| *ESE <nrf></nrf> | Standard Event Status Enable Register auf den Wert von <nrf> setzen.</nrf>                                                                                                                                                                                                                        |
| *ESE?            | Sendet den Wert im Standard Event Status Enable Register im numerischen Format <nr1> zurück. Die Syntax der Antwort lautet <nr1><rmt>.</rmt></nr1></nr1>                                                                                                                                          |
| *ESR?            | Gibt den Wert im Standard Event Status Register im numerischen Format <nr1><br/>aus. Anschließend wird das Register gelöscht. Das Antwortformat hat die Form<br/><nr1><rmt>. Weitere Informationen zur Antwort entnehmen Sie bitte dem<br/>Abschnitt "Statusberichterstattung".</rmt></nr1></nr1> |

| *IST?            | Gibt die Lokalmeldung " <b>ist</b> " laut Definition der Norm IEEE 488.2 aus. Die Syntax der Antwort lautet 0 <rmt>, wenn die Lokal-Meldung 'falsch' ist, bzw. 1<rmt>, wenn die Lokal-Meldung 'wahr' ist.</rmt></rmt>                                                           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *OPC             | Setzt das "Operation Complete" (Vorgang abgeschlossen)-Bit (Bit 0) im Standard<br>Event Status Register. Aufgrund des sequentiellen Ablaufs aller Vorgänge<br>geschieht dies unmittelbar nach Ausführung des Befehls.                                                           |
| *OPC?            | Query Operation Complete Status (Abfrage des Status "Vorgang<br>abgeschlossen"). Die Syntax der Antwort lautet 1 <rmt>. Aufgrund des<br/>sequentiellen Ablaufs aller Vorgänge steht die Antwort unmittelbar nach<br/>Ausführung des Befehls zur Verfügung.</rmt>                |
| *PRE <nrf></nrf> | Parallel Poll Enable Register auf den Wert von <nrf> setzen.</nrf>                                                                                                                                                                                                              |
| *PRE?            | Gibt den Wert im Parallel Poll Enable Register im numerischen Format <nr1><br/>aus. Die Syntax der Antwort lautet <nr1><rmt>.</rmt></nr1></nr1>                                                                                                                                 |
| QER?             | Abfragen und Löschen des Query Error Registers. Das Antwortformat hat die Form nr1 <rmt></rmt>                                                                                                                                                                                  |
| *RST             | Setzt das Gerät auf die Fernsteuerungs-Standardeinstellungen zurück. Die<br>Einstellungen und Ausgangsstatus beim Einschalten bleiben unverändert (siehe<br>Abschnitt "Standardeinstellungen für den ferngesteuerten Betrieb" im Kapitel<br>"Bedienung der Fernschnittstelle"). |
| *SRE <nrf></nrf> | Service Request Enable Register auf <nrf> setzen.</nrf>                                                                                                                                                                                                                         |
| *SRE?            | Gibt den Wert im Service Request Enable Register im numerischen Format <nr1> aus. Die Syntax der Antwort lautet  NR1&gt;<rmt>.</rmt></nr1>                                                                                                                                      |
| *STB?            | Gibt den Wert im Status Byte Register im numerischen Format <nr1> aus. Die Syntax der Antwort lautet <nr1><rmt>.</rmt></nr1></nr1>                                                                                                                                              |
| *WAI             | Abwarten bis "Operation Complete" (Vorgang abgeschlossen) ,wahr' ist. Da alle<br>Befehle erst vollständig abgearbeitet werden, bevor der nächste gestartet wird,<br>braucht es zu diesem Befehl keine weiteren Maßnahmen.                                                       |

# Befehle zur Schnittstellen-Verwaltung

| LOCAL              | Lokalen Betrieb aktivieren. Alle nachfolgenden Befehle führen zu einem Wiederherstellen des Remote-Modus.                                                                                                                                                                                                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IFLOCK <nrf></nrf> | Die Sperre, die das Gerät zwingt, nur auf diese Schnittstelle zu reagieren,<br>setzen oder löschen, wobei <nrf>: 0 = löschen und 1 = Sperre setzen.<br/>Ein Execution Error (Nummer 200) erscheint, wenn diese Anforderung<br/>abgelehnt wird, entweder weil ein Konflikt mit der Sperre einer anderen<br/>Schnittstelle besteht oder weil der Benutzer die Steuerungsmöglichkeit dieser<br/>Schnittstelle über die Webseite deaktiviert hat.</nrf> |
| IFLOCK?            | Statusanfrage für die Schnittstellensperre.<br>Die Antwort ist <nr1><rmt> wobei <nr1>:<br/>= 0 falls keine Sperre aktiv ist,<br/>= 1 wenn die fragende Schnittstelle bereits gesperrt ist, oder<br/>= -1 wenn die Sperre nicht verfügbar ist, weil sie entweder bereits verwendet<br/>wird oder weil der Benutzer die Steuerungsmöglichkeit dieser Schnittstelle über<br/>die Webseite deaktiviert hat.</nr1></rmt></nr1>                           |
| ADDRESS?           | Ausgabe der GPIB-Adresse des Geräts. Antwort ist: <nr1><rmt>.</rmt></nr1>                                                                                                                                                                                                                                                                                                                                                                           |

| IPADDR?    | Gibt die aktuelle IP-Adresse der LAN-Schnittstelle aus, vorausgesetzt diese ist                                                                                                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Wenn kein Verbindung besteht, wird (bei entsprechender Konfiguration) als<br>Antwort die statische IP gemeldet, sonst 0.0.0.0 wenn das Gerät auf DHCP<br>oder Auto-IP wartet.<br>Die Antwort ist nnn.nnn.nnn <rmt>, wobei nnn zwischen 0 und 255 liegt.</rmt> |
| NETMASK?   | Gibt die aktuelle Netzmasker der LAN-Schnittstelle aus, vorausgesetzt diese ist verbunden. Die Antwort ist nnn.nnn.nnn.RMT>, wobei nnn zwischen 0 und 255 liegt.                                                                                              |
| NETCONFIG? | Gibt an, auf welche Weise zuerst eine IP-Adresse gesucht wird.<br>Antwort ist <crd><rmt> wobei <crd> DHCP, AUTO oder STATIC sein kann.</crd></rmt></crd>                                                                                                      |

Die folgenden Befehle beziehen sich auf die von der LAN-Schnittstelle verwendeten Parameter. **Hinweis:** Das Gerät muss nach dem Senden folgender Befehle einmal aus und wieder eingeschaltet werden, bevor die neuen Einstellungen aktiviert sind (oder als Antwort auf die oben aufgeführten Abfragen ausgegeben werden). Das Gerät prüft weder die Gültigkeit der IP-Adresse noch der Netzmaske (geprüft wird lediglich, ob jeder Teil in 8 Bits passt). Der **LAN reset** Schalter setzt diese Befehle außer Kraft und stellt den Standardzustand wieder her (siehe oben).

| NETCONFIG<br><cpd></cpd> | Bestimmt, auf welche Weise zuerst eine IP-Adresse gesucht wird. <cpd> muss entweder DHCP, AUTO oder STATIC sein.</cpd>                                                                                                                                                                        |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPADDR<br><quad></quad>  | Setzt die mögliche statische IP-Adresse der LAN-Schnittstelle (wie auf der<br>Webseite).<br>Die IP-Adresse muss als vier durch Punkte voneinander getrennte ganze<br>Zahlen eingegeben werden, wobei jeder Teil einem <nr1> im Bereich 0 bis 255<br/>entspricht, (z. B. 192.168.1.101).</nr1> |
| NETMASK<br><quad></quad> | Setzt die Netzmaske für die statische IP-Adresse der LAN-Schnittstelle.<br>Die IP-Adresse muss als vier durch Punkte voneinander getrennte ganze<br>Zahlen eingegeben werden, wobei jeder Teil einem <nr1> im Bereich 0 bis 255<br/>entspricht, (z. B. 255.255.255.0).</nr1>                  |

#### Sonstige Befehle

| *IDN? | Gibt die Identifikation des Geräts aus. Die genaue Antwort richtet sich nach der<br>Gerätekonfiguration und hat die Form<br><name>,<modell>,<seriennummer>,<version><rmt>, wobei für <name> der<br/>Herstellername erscheint, für <modell> der Gerätetyp und für <version> die<br/>installierte Softwareversion. Das Format von <version> ist<br/>X.xx – Y.yy, wobei 'X.xx' die Revisionsnummer der Main-Firmware und 'Y.yy' die<br/>Revisionsnummer der Interface-Firmware angibt. Die Interface-Firmware ist über<br/>den USB-Port vom Benutzer vor Ort aktualisierbar.</version></version></modell></name></rmt></version></seriennummer></modell></name> |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *TST? | Das Netzgerät besitzt keine Eigentesteinrichtung, weshalb die Antwort stets 0<br><rmt> lautet.</rmt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *TRG  | Das Netzgerät hat keine Fähigkeit zur Auslösung. Der Befehl wird akzeptiert, führt aber zu keiner Aktion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Fehlermeldungen

Jede Fehlermeldung hat eine Nummer - nur diese Nummer wird über die Fernbedienungs-Schnittstellen ausgegeben. Fehlermeldungsnummern werden nicht angezeigt, sondern im Execution Error Register (Ausführungsfehlerregister) aufbewahrt, wo sie über die Fernschnittstellen gelesen werden können (siehe Kapitel "Statusberichterstattung").

# Wartung

Die Hersteller oder ihre Vertretungen bieten eine Reparatur für fehlerhafte Geräte an. Falls Anwender Wartungsarbeiten selbst durchführen möchten, sollten sie nur geschultes Personal damit beauftragen. Für diese Arbeiten sollte das Servicehandbuch zu Hilfe genommen werden, das direkt beim Hersteller der Geräte oder dessen Vertretungen bezogen werden kann.

#### Sicherung

Der korrekte Sicherungstyp ist:

15 Amp 250V HBC träge, (20 x 5 mm)

Sicherstellen, dass nur Sicherungen der vorgeschriebenen Stromstärke und des vorgesehenen Typs als Ersatz verwendet werden. Provisorische "Sicherungen" und der Kurzschluss von Sicherungshaltern sind verboten!

Vor Austausch der Sicherung muss das Gerät vom Netz getrennt werden. Entfernen Sie die 6 Schrauben zur Befestigung des Deckels und heben Sie das obere Gehäuseteil ab. Ersetzen Sie die Sicherung mit dem korrekten Typ und setzen Sie das Gehäuseoberteil wieder auf.

Beachten Sie, dass die Sicherung in erster Linie für einen sicheren Betrieb des Geräts sorgt und Schäden bei einem Ausfall der Schaltvorrichtungen verhindern soll. Wenn eine Sicherung durchbrennt, ist es daher sehr wahrscheinlich, dass die Ersatzsicherung ebenfalls durchbrennt, da das Gerät fehlerhaft ist. In diesem Fall muss das Gerät zum Service an den Hersteller zurückgeschickt werden.

## Reinigung

Verwenden Sie zur Reinigung des Geräts ein etwas mit Wasser oder einem milden Reinigungsmittel angefeuchtetes Tuch.

#### ACHTUNG! ZUR VERMEIDUNG VON STROMSCHLÄGEN ODER BESCHÄDIGUNGEN DES GERÄTS DARF KEIN WASSER IN DAS GEHÄUSE GELANGEN. DAS GERÄT NICHT MIT LÖSUNGSMITTELN REINIGEN, UM SCHÄDEN AM GEHÄUSE ZU VERMEIDEN.

## Webversion

Die neueste Version dieser Anleitung, IVI Treiber und mögliche Firmware-Updates finden Sie auf http://www.tti-test.com/go/csx .



Thurlby Thandar Instruments Ltd.

Glebe Road • Huntingdon • Cambridgeshire • PE29 7DR • England (United Kingdom) Telephone: +44 (0)1480 412451 • Fax: +44 (0)1480 450409

International web site: www.aimtti.com • UK web site: www.aimtti.co.uk • USA web site: www.aimtti.us Email: info@aimtti.com